
Contents1 Introduction 11.1 The Language Oriented View : 11.2 The Design of Meta-Lisp : 31.3 Motivation : 61.4 Related Work : 71.4.1 Towards Language Oriented Programming : : : : : : : : : : : : : : : 71.4.2 Language Development Tools : 91.5 Dissertation Outline : 112 Background 132.1 Language De�nition : 142.1.1 Grammars : 142.1.2 Derivation Trees : 162.1.3 Syntax Structures : 202.2 Parsing : 222.2.1 Left-Factoring : 222.2.2 Limited Backtrack Top-Down Parsing : : : : : : : : : : : : : : : : : 232.2.3 Extensions to TDPL : 282.2.3.1 Left Recursion : 292.3 Syntax-Directed Translation : 312.3.1 Translation and Semantics : 312.3.2 Syntax-Directed Translation Schemata : : : : : : : : : : : : : : : : : 312.3.3 Attribute Grammars : 353 Overview of Meta-Lisp 373.1 Introductory Examples : 383.1.1 Simple Translation : 38i

ii CONTENTS3.1.2 Symbolic Di�erentiation : 423.2 Translation Formalism : 483.2.1 Non-Elementary Rules : 483.2.1.1 Alternates : 483.2.1.2 Nested Structures : 493.2.1.3 Left Recursion : 503.2.2 Elementary Components : 513.2.2.1 Denotation : 513.2.2.2 End of Input Test : 523.2.2.3 Pre�x : 523.2.2.4 Su�x : 523.2.2.5 Empty : 533.2.3 Pseudo Rules : 533.2.3.1 Enumeration : 533.2.3.2 Predication : 533.3 Semantic Actions : 543.3.1 Packages : 543.3.2 List Construction : 553.3.3 Invocation : 553.3.3.1 Dotted Invocation : 563.3.3.2 LISP Functions : 563.3.3.3 Calling Meta-Lisp from LISP : : : : : : : : : : : : : : : : 563.3.4 Attributes : 573.3.4.1 Synthesised Attributes : 573.3.4.2 Inherited Attributes : 573.3.5 Conceptual Values : 583.3.6 Semantic Backtracking : 583.4 Discussion : 584 Programming in Meta-Lisp I 614.1 List Processing : 614.1.1 Length : 624.1.1.1 Naive Length : 624.1.1.2 A Better Length : 654.1.2 Reversing a List : 654.1.3 List Membership : 66

CONTENTS iii4.1.4 Mapping a List : 664.1.5 Splitting a List into two : 674.1.6 Merging two sorted lists : 674.1.7 Sorting : 684.2 Symbolic Di�erentiation: as in LISP : 694.2.1 Program Strategy : 694.2.2 Top Level Elaboration : 704.2.3 Reading and Validating the Input : : : : : : : : : : : : : : : : : : : 714.2.4 Reading a Line of Input : 724.2.5 Translating into Internal Representation : : : : : : : : : : : : : : : : 734.2.6 Derivation : 764.2.7 Simpli�cation : 774.2.7.1 Collect : 824.2.8 Show Result : 834.2.9 Performance: LISP versus Meta-Lisp : : : : : : : : : : : : : : : : : 844.3 Symbolic Di�erentiation: A Language Oriented Design : : : : : : : : : : : : 874.3.1 Program Strategy : 874.3.2 Top-Level Elaboration : 874.3.3 Revised Input Routines : 874.3.4 Di�erentiating and Validating an Expression : : : : : : : : : : : : : 874.3.5 Comparison of the two Designs : 884.3.6 The Workings of the Program : 914.4 Approximating Roots : 934.4.1 Top-Level Elaboration of newton : 934.4.2 The Main Body of the Program : 945 Programming in Meta-Lisp II 975.1 Path Finding : 975.2 The Water-Container Puzzle in Meta-Lisp : : : : : : : : : : : : : : : : : : 1015.3 Parse Tree Printing : 1046 Denotational Semantics in Meta-Lisp 1096.1 The Calculator : 1116.2 Syntax of the Calculator Language : 1126.2.1 Lexical Analysis : 1136.2.2 Concrete to Abstract Syntax : 114

iv CONTENTS6.3 Semantic Algebras : 1226.4 Valuation Functions : 1236.4.1 Program : 1256.4.2 Expression Sequence : 1256.4.3 Expressions : 1276.4.4 Numerals : 1276.5 Discussion : 1287 Meta-circular De�nition of Meta-Lisp 1337.1 Meta-Circular Language De�nitions : 1347.1.1 For Meta-circular De�nitions : 1347.1.2 Against Meta-circularity : 1357.1.3 Meta-Lisp as its own meta-language : : : : : : : : : : : : : : : : : 1367.2 The Syntax of Meta-Lisp : 1397.2.1 Lexical Analysis : 1397.2.2 Mapping from Concrete to Abstract Syntax : : : : : : : : : : : : : : 1417.2.3 The Abstract Syntax of Meta-Lisp : : : : : : : : : : : : : : : : : : 1477.3 Semantic Algebras : 1507.3.1 Semantic Domains : 1507.3.2 Semantic Functions : 1507.4 The Semantics of Meta-Lisp: Part I : 1527.4.1 Top-Level Elaboration of the Meta-circular Interpreter : : : : : : : : 1537.4.2 Alternatives : 1557.4.2.1 Alternatives with Default Action : : : : : : : : : : : : : : : 1567.4.2.2 Backtracking Alternatives : : : : : : : : : : : : : : : : : : : 1577.4.2.3 Committed Alternatives : 1577.4.2.4 Exhausting Alternatives : 1577.4.3 Syntax Rules : 1587.4.4 Pseudo Rules : 1587.4.4.1 Predication : 1587.4.4.2 Enumeration : 1607.4.4.3 LISP Primitives : 1607.4.4.4 Importing : 1617.4.5 Composition : 1617.4.5.1 Composition: General Case : : : : : : : : : : : : : : : : : : 1627.4.5.2 Composition: Terminating Case : : : : : : : : : : : : : : : 162

CONTENTS v7.4.6 Syntax Component : 1637.4.6.1 Pre�x : 1637.4.6.2 Su�x : 1637.4.6.3 Empty : 1647.4.6.4 End of Input Test : 1647.4.6.5 Denotation : 1667.4.6.6 Constituent E�ective Concept : : : : : : : : : : : : : : : : 1667.4.6.7 Nested Composition : 1677.4.7 Left Recursion : 1687.4.7.1 Left Recursive Alternatives : : : : : : : : : : : : : : : : : : 1697.5 The Semantics of Meta-Lisp: Part II : 1707.5.1 Semantic Actions : 1707.5.2 Semantic Terms : 1707.5.3 Semantic Terms: General Case : 1707.5.4 Semantic Terms: Terminating Case : : : : : : : : : : : : : : : : : : : 1717.5.5 Semantic Term : 1717.5.5.1 Sequencing : 1717.5.5.2 Synthesised Attributes : 1727.5.5.3 Default Synthesised Attributes : : : : : : : : : : : : : : : : 1727.5.5.4 Inherited Attributes : 1727.5.5.5 Default Inherited Attributes : : : : : : : : : : : : : : : : : 1737.5.5.6 Choice function : 1737.5.5.7 Invocation : 1737.5.5.8 List Construction : 1757.5.5.9 Conceptual Value : 1757.5.5.10 Denotation : 1757.5.5.11 Identi�ers : 1757.5.5.12 Number : 1767.5.5.13 Failure : 1767.5.6 Elements : 1767.5.6.1 Cons-ing an Element into a List : : : : : : : : : : : : : : : 1767.5.6.2 Splicing an element into a List : : : : : : : : : : : : : : : : 1777.5.6.3 Elements: Terminating Case : : : : : : : : : : : : : : : : : 1777.6 Discussion : 1807.6.1 Meta-Interpreting the Meta-circular Interpreter : : : : : : : : : : : : 180

vi CONTENTS7.6.2 Reections : 1818 Implementation 1838.1 Implementing Meta-Lisp : 1838.1.1 Extensions : 1868.1.2 Optimisation : 1878.1.2.1 Left-factorisation : 1878.1.2.2 Parameterisation : 1888.2 The Meta-Lisp Programming Environment : : : : : : : : : : : : : : : : : : 1899 Conclusion 1919.1 Contributions : 1919.2 Future Work : 1929.2.1 Improvements : 1929.2.2 Enhancements : 1939.2.2.1 Type Checking : 1939.2.2.2 Partial Evaluation : 1949.2.2.3 Program Inversion : 1949.2.2.4 Automatic Generation of Test Data : : : : : : : : : : : : : 1959.3 Discussion : 195

List of Figures2.1 Parse Tree for Left to Right Derivation : 182.2 Parse Tree for Right to Left Derivation : 192.3 Parse Tree for Left Recursive Grammar : 212.4 Annotated Parse Tree : 343.1 SDT Schema in Meta-Lisp : 393.2 Decorated Parse Tree : 403.3 The Trace of a Simple Translation : 414.1 Symbolic Di�erentiation : 694.2 Reading and Validating an Expression : 714.3 Reading and Validating a Variable : 724.4 Reading a Line of Input : 724.5 Translating into Internal Representation : 744.6 Constructors for Algebraic Expressions : 754.7 Abstract Analysers of Algebraic Expressions : : : : : : : : : : : : : : : : : : 754.8 Di�erentiation Rules : 764.9 Simpli�cation : 774.10 SPLUS in the LISP 1.5 Primer : 784.11 SPLUS in Meta-Lisp : 794.12 SPLUS in LISP : 804.13 Simpli�cation Rules : 814.14 Collect : 824.15 Display Result : 834.16 Output Routines : 844.17 Elementary De�nitions for Symbolic Di�erentiation : : : : : : : : : : : : : : 864.18 Revised Input Routines : 884.19 Rules of Di�erentiation : 89vii

viii LIST OF FIGURES4.20 Di�erentiating and Validating an Expression : : : : : : : : : : : : : : : : : 894.21 Di�erentiation in Action : 904.22 The Original De�nition of expression : 924.23 Top-Level Elaboration of newton : 934.24 Calculating Roots : 944.25 Elementary De�nitions for newton : 954.26 Tracing newton : 965.1 The Water-Container Puzzle : 975.2 State Transitions in Prolog : 985.3 The Water-Container Puzzle in Prolog : 995.4 Solutions to the Water-Container Puzzle : 1005.5 State Transitions in Meta-Lisp : 1015.6 The Water-Container Puzzle in Meta-Lisp : : : : : : : : : : : : : : : : : : 1025.7 Elementary De�nitions in wcp : 1035.8 Parse-Tree Decorated with Display Information : : : : : : : : : : : : : : : : 1055.9 LATEX Code : 1065.10 Calculating the Dimensions of a Tree : 1075.11 Fitting a Tree into Displays : 1086.1 The Calculator : 1116.2 Example Session with the Calculator : 1116.3 Abstract Syntax of the Calculator : 1126.4 Lexical Analysis of the Example Session : 1146.5 Lexical Analyser for the Calculator Language : : : : : : : : : : : : : : : : : 1156.6 Internal Representation of the Abstract Syntax : : : : : : : : : : : : : : : : 1166.7 Parser for the Calculator Language : 1176.8 Abstraction Function : 1176.9 A Concrete Derivation Tree : 1186.10 An Abstract Derivation Tree : 1196.11 Abstract Syntax in Meta-Lisp : 1206.12 Semantic Algebras : 1226.13 Valuation Functions : 1236.14 Denotational Semantics of the Calculator in Meta-Lisp : : : : : : : : : : : 1246.15 Trace of Interpreting Numerals : 1296.16 Trace of Interpreting Example Session : 130

LIST OF FIGURES ix7.1 Abstract Syntax I : 1407.2 Abstract Syntax II : 1417.3 Top Level Elaboration of Concrete to Abstract Mapping : : : : : : : : : : : 1427.4 Concrete Syntax of Left Recursive Rules : 1427.5 Structure of a left recursive De�nition : 1437.6 Structure of a Right-recursive De�nition : 1447.7 Concrete Syntax of Alternatives : 1457.8 Concrete Syntax of Semantic Actions : 1467.9 Miscellanous De�nition in mci-c2a : 1477.10 Abstract Syntax I in Meta-Lisp : 1487.11 Abstract Syntax II in Meta-Lisp : 1497.12 Semantic functions : 1517.13 De�nition of split : 1527.14 Top Level Elaboration of the Meta-circular Interpreter : : : : : : : : : : : : 1547.15 Alternatives : 1567.16 Syntax Rules : 1587.17 Pseudo Rules : 1597.18 Composition : 1617.19 Syntax Component : 1657.20 Denotation : 1667.21 Left Recursion : 1687.22 Semantic Action : 1707.23 Semantic Terms : 1717.24 Semantic Term : 1747.25 Dealing with Failure : 1787.26 Semantic Elements : 1787.27 Elementary De�nitions : 1808.1 The Construction of the First Compiler : 1858.2 Extending the Language : 1868.3 Optimising the Implementation : 1878.4 Trace Commands : 189

Chapter 1IntroductionThe set of valid inputs to any program can be regarded as a form of computer language {an input data language [Pra75, 5]. The set of possible outputs can similarly be regarded asa computer language. Furthermore, a program can be thought of as a translator of someinput data language to an output data language. The central thesis of this dissertationis that this language oriented view of programs is not only valid but that it leads to theestablishment of a new declarative style of programming in which program design becomeslanguage design.The practical way of exploring the implications of the language oriented view of programsand of assessing the potential of the language oriented style of programming is to designand implement a programming language and system that provides support for the newprogramming paradigm. For this purpose, the design and implementation of a programminglanguage, called Meta-Lisp, is presented here, together with a number of case studies oflanguage oriented programming in Meta-Lisp. In addition to providing evidence for themain thesis of this dissertation, the case studies serve also as points of comparison with thefunctional and the logic programming paradigms.1.1 The Language Oriented ViewEstablishing the claim that any program can be regarded as a translator from an input datalanguage to an output data language is simple enough. It depends solely on providing abroad enough notion of a data language. Formally a language is just a set of sequences ofsymbols drawn from an alphabet. If we allow this alphabet to include not only charactersbut key clicks, ashes on a screen or any discrete well de�ned behaviour that a computer1

2 CHAPTER 1. INTRODUCTIONcan exhibit in a sequence,1 then the claim that the input as well as the output can beregarded as languages will be established. Considering further that a translation is just amapping, and that a program can be thought of as a mapping from its input to its output,the above claim turns out to be just a variant of the black box model of programs withsequential input and output.The more interesting question is why it is worthwhile to regard programs as translatorsand how it leads to the establishment of a new programming paradigm. To answer thesequestions it is necessary to consider the possible implications of the language oriented viewof programs for the program design process itself.Thinking about programs as translators leads naturally to considering the possibility ofprograms being designed and built as translators. Drawing on the experience of buildingtranslators using syntax-directed techniques, we can begin to envisage what would be in-volved in the design of programs as translators: �rst, an explicit grammatical descriptionof the input language of the program would need to be provided; second, the grammati-cal structure imposed on the set of valid inputs by this description could then be used asa framework to prescribe the appropriate actions to produce the desired output. From amethodological point of view both steps are valuable. In conventional programming thegrammatical speci�cation of the set of valid inputs to a program can only be part of thedocumentation. It can contribute greatly to the clarity of a programming style if this canbe incorporated into, and in fact help to structure, the program itself.On the face of it, the second step appears to be problematic. In most translator writingsystems (TWS), the semantic actions that are used to prescribe the output of the translatorare written in the host language (e.g. LISP, C, Pascal or Prolog etc.) of the tool. Needlessto say, none of these languages explicitly supports the design of programs as translators.When using such tools in practice, all the clarity that characterises the overall design of atranslator can be swamped by the complexity and often opacity of the way semantic actionsare speci�ed.Maintaining the clarity and uniformity of the design of programs as translators requires atranslator writing tool in which the semantic actions can be speci�ed in a way that preservesthe language oriented view of programs. This can be achieved, �rstly, by viewing all non-primitive procedures in the semantic actions as programs/translators in their own right, andsecondly, by stipulating that these procedures are to be elaborated as translators in theirown right. In other words, what is required is that the design of these procedures starts froman explicit grammatical description of their input language and uses the structure thereby1this excludes multiple asynchronous sources of input as well as parallel output.

1.2. THE DESIGN OF Meta-Lisp 3imposed on the input as the framework for specifying further actions etc. Accordingly, aprogramming system to support a language oriented style of programming would have to bea translator writing system that allows the elaboration of all the non-primitive proceduresthat appear in the semantic actions as translators in their own right. The programminglanguage and system, called Meta-Lisp, was designed speci�cally as such a system. Itsdesign is reviewed in the next section.1.2 The Design of Meta-LispLISP was chosen as the implementation language for the envisaged language oriented pro-gramming system. Given LISP's reputation as an \implicit meta-language" (i.e. a languageto be used to de�ne other languages and translators [Ing66, 115-6]) the choice of LISP toimplement a meta-language seemed all the more appropriate. The a�nity between theintended system and LISP goes beyond considerations of ease of implementation. This isreected in the name of the programming language. The Meta in Meta-Lisp is intendedboth as an indication of the meta-linguistic power of the system as well as the fact that itis built on top of LISP.Bootstrapping was used extensively not only in the construction of a compiler for thelanguage but in its design and documentation in the form of a denotational style meta-circular interpreter. The primary objective of the development of a meta-circular interpreterforMeta-Lisp has been to provide a complete operational de�nition of the language in thesame way that a meta-circular de�nition plays a role in the de�nition of LISP. [All78, 162]The main goal of the development of the compiler has been e�ciency. Both the interpreterand the compiler have been tested on a range of sample programs, including all the casestudies presented here, with identical results.The primary design objective for Meta-Lisp was to provide linguistic support for thelanguage oriented paradigm in the form of an appropriate translator writing system. Thisleft many design decisions underdetermined. Although it made speci�c demands on theSemantic Language it left a free choice for the other main component of the system, theunderlying grammatical formalism.The choice of underlying grammatical formalism is always a critical factor in determin-ing the e�ciency of the operations of the translators de�nable by a TWS. In preferenceto Context Free Grammars (or their restricted forms) the Top Down Parsing Language(TDPL) described by Aho and Ullman [AU72] proved to be a particularly attractive choiceof underlying grammatical formalism. The de�nitional power of context-free grammar can

4 CHAPTER 1. INTRODUCTIONbe regarded as excessive, in the sense that it is di�cult to envisage the consequences of suchde�nitions. The primary reason for this is that CFG can be ambiguous. Another, relatedproblem is that backtracking may become necessary at any point. This, in itself, can renderany attempt at envisaging possible forms of the sentences of a language de�ned by a CFGinherently incomplete, in the absence of machine support. In contrast, the main advantageof TDPL lies in the fact that, as a language de�nitional formalism, it is tied to a { trans-parent and e�cient { top down parsing algorithm in which backtracking is limited. Equallyimportant is the fact that it is an unambiguous grammatical formalism. Consequently, itis easy to envisage the possible forms that representative sentences of the language cantake, even without machine support. Naturally, TDPL could only be a starting point forthe design of a grammatical formalism suitable to be the basis of a general purpose TWS.The most fundamental enhancement of the original language de�nitional formalism was theaddition of capabilities of specifying arbitrary (nested) list structures and facilities to testand select speci�c components of the input. Further enhancements include the allowancefor a limited form of explicit left-recursion.For the Semantic Language ofMeta-Lisp, the second main component of the language,the natural choice was a simple applicative language with a limited number of extra fea-tures and a non-standard notion of application. The standard notion of application is theapplication of a function (or procedure) to given arguments. When programs or even pro-cedures are viewed as translators from an input language to an output language, we cantalk sensibly only about a single \argument" that they could receive viz. a sequence ofsymbols which may or may not form a sentence of their input language. Accordingly, inthe Semantic Language of Meta-Lisp, the input parameters to the procedures appearingin the semantic action are not given as \arguments" but are �rst made into a single inputlist which is then passed to the procedure as its single input. It is then the responsibilityof this procedure to determine the structure of this input and produce appropriate outputin the process. What this amounts to is that the calling mechanism employed in the Se-mantic Language is Syntax-Directed Translation. Procedure calls with a given number ofspeci�c arguments can be regarded as special cases of this concept of procedure applicationwhen the input has a particularly simple structure. In addition to the ability of invokingprocedures as described, the Semantic Language ofMeta-Lisp contains features that allowthe construction of arbitrary list structures from given components (like the backquote ofLISP), assignment and reference of attributes, and the use of procedural parameters.Discounting the addition of a control primitive for forcing backtracking, the model ofcomputation of Meta-Lisp is essentially the same as in syntax-directed translation. The

1.2. THE DESIGN OF Meta-Lisp 5only signi�cant di�erence lies in the way procedures in the semantic actions are invoked,and the way they are de�ned, viz as translators. The result is a new kind of programminglanguage which has, as its distinguishing feature, the use of syntax-directed translation asits parameter passing mechanism.Meta-Lisp's syntax-directed parameter passing mechanism can be contrasted with thecalling mechanism of modern functional languages like ML, [Wik87], which utilises patternmatching. As syntax-directed translation properly subsumes pattern matching,Meta-Lispcan o�er capabilities not possessed by functional languages, like ML: these include supportfor data abstraction[ASS85, 72], (see page 42) representation independent or level-wise pro-gramming see [All78, 53-5], as well as support for parser construction. The conictingrequirements of pattern matching and data abstraction have been discussed by Wadler in[Wad87, 307]. \Pattern matching depends on making public a data type representation,while data abstraction depends on hiding the representation." The desirability of facilitiesfor language processing can be judged from the point made by Wikstr�om that a parsergenerator is a tool that should accompany an ML system for production use [Wik87, 294].What is common to both ML as a functional language andMeta-Lisp as a language ori-ented programming language, is that they both make commitments about which quantitiesare inputs and which are outputs. This can be contrasted to logic programming languages,such as Prolog, that do not make such commitments [Red86, 3]. The multidirectionalityof Prolog is a consequence of the fact that Prolog uses uni�cation as its calling mechanism[DFP86, 45]. It gives capabilities to Prolog not possessed by ML, or Meta-Lisp for thatmatter. Through the use of operator declarations Prolog also has explicit language de�ni-tional capabilities. In terms of expressive power, Prolog is clearly superior. In fact Prolog'sexpressive power can be said to be so great, that it may even be regarded as excessive, inthe sense, that Prolog programs can give rise to computations that the programmer hadnever thought of, due to full backtracking and multidirectionality. In most cases, this leadsto the need to rely on the impure facilities, such as the cut, to systematically cut out theexcess. Mode declarations are also used for the purpose of limiting the de�nitional power ofa particular clause. The most important design decisions for Meta-Lisp have in fact beeninformed by the attempt to avoid excesses of de�nitional power. The most signi�cant ofthese decisions have been not to use Context-Free Grammars as the underlying grammaticalformalism. It can be argued, that CFG's themselves su�er from an excess of de�nitionalpower, that is analogous to that of Prolog, viz unlimited backtracking. In terms of supportfor data-abstraction Prolog does not fair any better than ML.In terms of expressive power Meta-Lisp as a programming language occupies a kind

6 CHAPTER 1. INTRODUCTIONof mid-way point between functional and logic programming languages. Meta-Lisp hasgreater expressive power for de�ning the set of valid input to a program than say ML.(Meta-Lisp can de�ne it as a language, whereas ML can only de�ne it as a pattern).Prolog on the other hand can be said to de�ne the set of valid inputs to a program as theset of uni�able terms. This is a far greater, and less comprehendable set than what can bede�ned using Meta-Lisp. The fact that Meta-Lisp, in terms of expressive power occupiesthe middle ground between ML and Prolog does not mean that Meta-Lisp was designedwith this objective in mind. To some extent it is a consequence of a conscious attempt toavoid excesses of de�nitional power. However, there were other, broader motivations thathave prompted its development. As an indication of the aspirations of the current work,the following section discusses some of the motivations for it.1.3 MotivationThe idea that every program implicitly de�nes an input data language led K. John Goughto suggest that \the ideas of language processing can and should be applied to the design ofalmost any program" and then go on to contend that \in all situations the input languageof a program should be formally de�ned, and then implemented by systematic techniques".[Gou88, 2] The language oriented view is very similar to his position, except for requiringlanguage de�nitions to be given in a form that allows the generation of appropriate languageprocessors by \automated" means. Meta-Lisp provides just such means.Perhaps the richest source of motivation for the development of language oriented pro-gramming is the LISP tradition. Abelson and Sussman in their classic textbook The Struc-ture and Interpretation of Computer Programs invite us to regard \almost any program asthe evaluator for some language" and suggest that \the technology for coping with large-scale computer systems merges with the technology for building new computer languages,and computer science itself becomes no more (and no less) than the discipline of construct-ing appropriate descriptive languages." [ASS85, 294-5] Accepting the suggestion that anyprogram can be regarded as an evaluator (or interpreter) for a \special-purpose language"for dealing with a given problem domain, leads naturally to a consideration of the use oftranslator writing tools to de�ne these special-purpose languages as the language orientedway of writing programs as interpreters.In discussing possible improvements to LISP, John McCarthy at the 1980 LISP Confer-ence considered the question whether syntax-directed translation should be a feature to beadded to LISP or whether it should be the basis of a new language. McCarthy's response

1.4. RELATED WORK 7to this question was that \both the functional form of computation that LISP has now andsyntax directed features are wanted in one language." [McC80, vii]. Meta-Lisp is proposedas just such a language.J.L. Bentley in the Programming Pearls column of the ACM Journal under the title\Little Languages" [Ben86] discusses the implementation of a program for the typesettingof pictures as a compiler for a \little language" using a compiler-compiler. In a companionpaper [BK86] the advantages of designing a \little language" and implementing it as a com-piler are identi�ed in that it \gives users a concise speci�cation of how to use the program,provides an organising framework for implementation, and often enables the implementorto use tools to build the program."Similar views are expressed by the developers of the EQN typesetting system for mathe-matics: \De�ning a language, and building a compiler for it with a compiler-compiler systemseems like the only sensible way to do business. Our experience with the use of a grammarand a compiler-compiler has been uniformly favourable. If we had written everything intocode directly, we would have been blocked into our original design. Furthermore, we wouldhave never been sure where the exceptions and the special cases were. But because we havea grammar, we can change our minds readily and still be sure that if a construction works inone place it will work everywhere." [?] These are admirable software engineering qualitiesindeed. The real motivation for the development of language oriented programming is to beable to do similarly, in a much wider domain than previously thought possible, by turningthe methodology and technology of the \little languages" strategy into a general purposeprogramming methodology and technology.To sum up: the LISP tradition invites us to view programs as interpreters for special-purpose languages. Experience in the development of scripting languages (e.g. EQN, GRAP,PIC etc) teaches us the value of viewing programs as \compilers" for \little languages." Asboth interpreters and compilers are but translators, the language oriented view of programscan be seen to encompass, as well as generalise both previous approaches.1.4 Related Work1.4.1 Towards Language Oriented ProgrammingThe potential of extending syntax-directed techniques to be used as a general-purpose pro-gramming system had been investigated before. In this respect the works of David Sand-berg on the LITHE programming language [San82], Stefan Feyock on Syntax Programming[Fey84], Yoshiyuki Yamashita and Ikuo Nakata on Coupled Context Free Grammars [YN88]

8 CHAPTER 1. INTRODUCTIONdeserve special mention.LITHE, an experimental programming language, combines the ideas of syntax-directedtranslation and the concept of classes. The LITHE system allows for the formulation of asemantic action \as a string that is translated into a sequence of actions by using other ruleaction pairs". In this regard LITHE can be said to contain the most important technicalcontribution that makes possible the extension of syntax-directed techniques into a generalpurpose technique. This possibility, however, is not exploited fully as the work is aimedprimarily at extensibility by allowing the user to \freely choose his own syntax".Feyock's starting point is \the strong formal similarity of BNF (Backus Normal Form)productions to Horn clauses". He goes on to describe a \new programming technology thatis to syntax analysis and parser construction as formal logic is to logic programming (LP)"which is then accordingly named Syntax Programming. Feyock could be credited spottingthe potential for developing a new programming technology based on the idea of syntaxdirected translation. However, this objective is not ful�lled since the semantic actions arewritten, again, in the host language of the parser (LISP or Pascal).The strong formal similarity of Prolog and BNF rules has received much attention inrecent years. It seems that we have come full circle. When Prolog was �rst introduced,its proof strategy was made plausible by comparison with top down parsing. See [Kow79,Chapter 3]. By the end of the eighties, the new generation of computer scientists weremore readily familiar with Prolog, so that parsing technology and attribute grammars areviewed frequently from a logic programming viewpoint. In a recent paper [DM88], entitled\A Grammatical View of Logic Programming", Pierre Deransart and Jan Maluszynski havesucceeded in showing that the declarative reading and the procedural reading of pure logicprograms can be complemented by a grammatical reading where the clauses are consideredto be rewrite rules. Their aim has been to show that \this point of view facilitates transferof expertise from logic programming to other research on programming languages and viceversa." One particularly interesting example of this \transfer of expertise" is provided bythe paper, in the same volume, by Yoshiyuki Yamashita and Ikuo Nakata [YN88] thatintroduces the idea of a Coupled Context Free Grammar and shows that these are dualsof equivalent logic programs. This work is of special interest here as CCFG is put forwardexplicitly as an \extension of the syntax-directed translation schemes or attribute grammars.Although these schemes have provided excellent tools in the �eld of program translations,their expressive powers are too small to be used as general purpose programming systems."I would like to close this subsection by mentioning the work of Stephen Adams at theUniversity of Southampton. In terms of its aspiration, his work is the closest to the present

1.4. RELATED WORK 9work. This is immediately evident from the very title of his report: Towards Language-Oriented Programming. [Ada90]. In the report Adams describes language-oriented pro-gramming as the \de�nition and use of `designer' programming languages." (page 18) Heproposes a Language oriented methodology which involves� Understanding of all di�erent phenomena in terms of language.� De�nition and delineation of programming language fragments.� Re-use of language components.Adams also envisages an environment supporting language oriented programming as onethat would provide tools for de�ning language fragments as well as the mechanism of com-bining them to produce new language fragments. In the report, he goes on to investigatethe design options for a module system that can be used to combine language fragments.He also investigates partial evaluation as the means of e�cient execution of languages andlanguage tools.1.4.2 Language Development ToolsThe evolution of language development tools has its origin in Backus's invention of a nota-tion for describing the syntax of programming languages. This notation was an overnightsuccess. Backus himself expected at the time that he would have a solution just as neatfor dealing with Semantics. [Wex81, 89] Although his hopes were not to be ful�lled, thenotation that he invented was soon incorporated into practical compiler-compilers.One of the earliest example of such a system is Meta-II [Sch64]. It is of interest in thatthe underlying grammatical formalism that it uses is very similar to the Top-Down ParsingLanguage.Jed Marti's Little META Translator Writing System [Mar83] is interesting in that it iswritten in LISP as part of the Portable Standard LISP Project. There are a number ofsimilarities between this system and Meta-Lisp:� the translators it produces are modi�able without complete recompilation� the system was built using bootstrapping� it compiles into LISPThe most important di�erence between little META and Meta-Lisp is that the former isaimed exclusively at compiler and parser generation. The possibility of de�ning some of

10 CHAPTER 1. INTRODUCTIONthe functions used in the semantic actions in terms of little META rules is not even beingconsidered.One of the most widely used compiler-compilers is YACC [Joh79]. For a practicalintroduction to compiling techniques using YACC see [Ben90]. YACC is used to generate aLALR(1) parser from context-free grammars speci�ed in the appropriate form. Each ruleof the grammar has semantic actions associated with it. These are written in C. Thereare three improvements that have been recently proposed for YACC. They are of interestin the present context, not only for what they provide, but what they reveal about the`shortcomings' of YACC.The �rst improvement, proposed by Purtilo and Callahan in their NewYacc system,concerns the retention of the parse tree after a sentence has been accepted by YACC.The parse tree can then be traversed to carry out additional actions. These actions arecontrolled by rewrite rules associated with language productions in the NewYacc grammarextensions. The system \presents the look and feel of attribute grammar without sacri�cingthe simplicity of using normal yacc declarations." [PC89].The second improvement concerns the incremental generation LALR(1) parsers. Hor-spool describes an incremental parser generator, called ILARL, which permits the user to\modify a grammar one rule at a time and reporting problems to the user as soon as theyare apparent" [Hor89, 128-9]. It also allows the user to specify, or even change, the startsymbol of the grammar.The proposed third improvement to YACC was to provide the designer of a YACCgrammar a method of tracing a parser as it uses the grammar. See [FSO91].All these features { the look and feel of attribute grammars, the incremental constructionof parsers as well as tracing facilities { which were absent in compiler-compilers such asYACC are incoporated into the Meta-Lisp system, viewed as a compiler-compiler. In fact,since the parsing strategy supported by Meta-Lisp is top-down, the trace can be moremeaningful, than in the case for bottom up parsers. The trace of a bottom up parse givesno indication of the overall structures being explored. It only shows how a successful parsecan be built up from the bottom up. In the context of language oriented programming, tryto imagine what a bottom up trace of the execution of a program would look like. Firstthe lowest level actions would be seen, and only at a later stage would the trace indicatethat in fact, what these lowest level operations all add up to is, say, reading a line of input.Whereas, in a top down trace, we would know right away that the program is trying to reada line of input which then involves sub tasks which lead to further, more elementary tasks,etc.

1.5. DISSERTATION OUTLINE 111.5 Dissertation OutlineChapter 2 introduces basic background material such as the concepts of formal languages,their de�nition, parsing and translation. The Top Down Parsing Language, whichforms the basis of the underlying grammatical formalism of Meta-Lisp is alsointroduced in this chapter.Chapter 3 provides an overview of Meta-Lisp. Following two introductory examples,Meta-Lisp is then introduced in two sections. First the the language de�ni-tional formalism is introduced, then the Semantic Language.Chapter 4 presents a number of case studies designed to illustrate the process of languageoriented programming in Meta-Lisp. Section 1 presents simple examples of listprocessing in ML as well as Meta-Lisp. Section 2 develops a complete programfor Symbolic Di�erentiation. Section 3 presents a language oriented design of theprogram. Section 4 reuses parts of the di�erentiation program for approximatingthe roots of di�erentiable functions using the Newton-Raphson method.Chapter 5 contains two further case studies. The �rst presents solutions to a simple path�nding problem given both in Prolog and Meta-Lisp. The �nal case study is aprogram for the graphical display of trees. Although this program can be thoughtof as a \compiler" for a \little language," it is shown that standard compiler-compiler technology would not be adequate as the vehicle of its implementation.Chapter 6 illustrates how Meta-Lisp can be used to write denotational language de�ni-tions. The denotational de�nition of the language of a simple Calculator will bedeveloped alongside the description of a denotational style interpreter for it inMeta-Lisp. The primary objective of this chapter is to introduce the format ofdenotational de�nitions in Meta-Lisp. The same format will be used in Chapter7 in de�ning the semantics of Meta-Lisp itself.Chapter 7 formalises the operational semantics of Meta-Lisp in the form of a denotationalstyle meta-circular interpreter.Chapter 8 discusses the strategy that was used in the implementation of the Meta-Lispsystem, its current status and future developments.Chapter 9 provides comparisons with other paradigms and programming languages includ-ing ML, Prolog and LISP. The conclusion is formulated as much on the basis ofa retrospective critique of Meta-Lisp as on the basis of a prospective look atfuture work aimed at improving the technological and the linguistic support thatcan be given to language oriented programming.

12 CHAPTER 1. INTRODUCTION

Chapter 2BackgroundThe aim of this chapter is to review the basic concepts and terminology of formal languages,their parsing and translation. Much of the material is related to syntactic issues of formallanguages, i.e. concerning the rules for determining which sequences of symbols are wellformed sentences of a given language and which are not. Issues concerning the semanticsor meaning of formal languages will not be dealt with, except for introducing the notionof translational semantics. The de�nitions in this chapter follow the treatment of formallanguages in [AU72].The Chapter is organised as follows. Section 1 introduces the concept of a grammaras the means of specifying the syntax of a language. A grammar, however, does not onlyde�ne a language, but also imposes a structure on the set of sentences of a language. Thisstructure can be illustrated pictorially in the form of a syntax or derivation trees. Theintroduction of the concept of a derivation tree in Subsection 2.1.2, provides the means ofexamining some of the structural di�erences that can arise between equivalent grammars.In Subsection 2.1.3 the discussion centers on the di�erence between left recursive and right-recursive formulation of equivalent grammars. The process of determining if a sequence ofsymbols can be generated by a grammar is usually referred to as parsing or syntax analysis.Parsing methods are discussed briey in Section 2, followed by the de�nition of an e�cientand transparent formalism for language de�nition and syntactic analysis, known as the Top-Down parsing Language (TDPL) which forms the core of Meta-Lisp. The last section ofthis chapter introduces the idea of syntax-directed translation and its formalisation in theform of attribute grammars. 13

14 CHAPTER 2. BACKGROUND2.1 Language De�nitionFrom a formal point of view, a language is simply a set of sequences of symbols drawn froman alphabet. Sequences of symbols drawn from an alphabet that belong to a given languageare usually called sentences.De�nition 2.1 Let � be a set of symbols, called an alphabet. A sequence s = t1; t2 : : : tnof symbols drawn from some alphabet � is called a string over the alphabet �. The emptysequence of symbols is referred to as the empty string, denoted hi. Let �� denote the set ofall strings over the alphabet � including the empty string.A language L (over the alphabet �) is a subset of �� i.e. it is a set of strings over analphabet.2.1.1 GrammarsThe rules that determine the construction of the well formed sentences of a language areusually given in the form of a grammar.De�nition 2.2 A grammar is a 4-tuple G = (N;�; P; S) where1. N is a �nite set of nonterminal symbols or syntactic categories.2. � is a �nite set of terminal symbols, disjoint from N , called an alphabet3. P is a �nite set of productions or rules of the form � ! �, where � is a sequence ofterminal and/or nonterminal symbols with at least one non-terminal symbol, and �is a possibly empty sequence of terminal and/or nonterminal symbols.4. S is a distinguished symbol in N called the sentence or the start symbol.De�nition 2.3 A sentential form is a possibly empty sequence of terminal and/or nonter-minal symbols that can be formed according to the rules of a grammar.De�nition 2.4 A terminal string is a possibly empty sequence of terminal symbols.De�nition 2.5 A derivation or (generation) step according to a given grammar G is a stepby which from a given sentential form another sentential form is obtained by substituting inthe sentential form an occurrence of the left-hand side of a rule of the grammar by the righthand side of the rule. Formally, a relation)G (to be read as directly derives) on (N [�)�can be de�ned as follows: if �� is a sentential form and � ! � is a production in P , then��)G��.

2.1. LANGUAGE DEFINITION 15De�nition 2.6 A reduction step according to a given grammar G is a step by which from agiven sentential form another one is obtained by substituting in the given sentential form anoccurrence of the right hand side of a rule of the grammar G by its left hand side. Formally,a relation (G (to be read as directly reduces) on (N [�)� can be de�ned as follows: if ��is a sentential form and � ! � is a production in P , then ��(G��.Clearly a reduction step is the inverse of a derivation step in the sense that if �)G� then�(G�.De�nition 2.7 A derivation of a sentential form � is a sequence of derivation steps thatstarts with the sentence symbol of the grammar and leads to the sentential form �. Theusual notation for a nontrivial derivation is S +)G �, where +)G denotes the transitive closureof the relation)G .De�nition 2.8 A reduction of a sentential form � is a sequence of reduction steps thatstarts with the given sentential form � and leads to the sentence symbol of the grammar.The notation for a reduction is �+(GS, where +(G denotes the transitive closure of the relation(G .De�nition 2.9 A sentence generated or de�ned by a grammar G is a terminal string, w,which is derivable from the start symbol of the grammar G, or equivalently, that is reducibleto the start symbol of the grammar G.De�nition 2.10 The language de�ned by a grammar G, denoted L(G), is the set of sen-tences generated by G, i.e. L(G) = nwjS +)Gwo, or equivalently, L(G) = nwjw +(GSo,Grammars can be classi�ed according to the format of their productions. Let G =(N;�; P; S) be a grammar.De�nition 2.11 G is said to be1. Right-linear if each production in P is of the form A! xB or A! x, where A and Bare in N , i.e. nonterminal symbols, and x is in ��, i.e. is a possibly empty sequenceof terminal symbols.2. Context-free if each production in P is of the form A ! �, where A is in N , i.e.is a nonterminal symbol, and � 2 (N [�)� i.e. � is a possibly empty sequence ofnonterminal and/or terminal symbols.3. Context-sensitive if each production in P is of the form �! �, where j�j � j�j.

16 CHAPTER 2. BACKGROUNDA grammar with no restrictions as above is called unrestricted.Example 2.1.1 An example of a context-free grammar G0 = (fE; T; Fg ;fa;+; �; (;)g ; P; E) where P consists ofE ! T + E 1E ! T 2T ! F � T 3T ! F 4F ! (E) 5F ! a 6L(G0), the language de�ned by the grammar G0, is the set of arithmetic expressions thatcan be built up using the symbols a;+; �; (; and):Example 2.1.2 An example of a derivation in G0 would beE) T + E by 1 E ! T +E) F +E by 4 T ! F) a+E by 6 F ! a) a+ T by 2 E ! T) a+ F � T by 3 T ! F � T) a+ a � T by 6 F ! a) a + a � F by 4 T ! F) a+ a � a by 6 F ! aIn the last step a terminal string is obtained, i.e. a sentence of the language de�ned byour grammar is derived.2.1.2 Derivation TreesA derivation of a terminal string w according to a grammar G exhibits a proof that w 2L(G), i.e. that it is a sentence of the language generated by the grammar G. In thatproof the production rules of the grammar play the role of axioms. A derivation beginswith the most general syntactic category of the grammar, i.e. the sentence symbol, andby proceeding down through more speci�c sentential forms, ultimately a terminal string isreached. Proofs of this kind are usually referred to as top down proofs.The distinctive feature of this kind of proof that it is goal-directed in the sense that thenonterminal symbols introduced in the derived sentential form represent further subgoalsfor the derivation as a whole.

2.1. LANGUAGE DEFINITION 17Example 2.1.3 An example of a reduction in G0 could be constructed by starting withthe terminal string a+a�a and attempting to reduce it to the start symbol of the grammar:a+ a � a (F + a � a by 6 F ! a(T + a � a by 4 T ! F(T + F � a by 6 F ! a(T + T � a by 4 T ! F(T + T � F by 6 F ! a(T + T by 3 T ! T � F(T +E by 3 E ! T(E by 1 E ! T +EThe reduction of a terminal string w according to a grammar G to the sentence symbolexhibits a proof that w 2 L(G). A reduction begins with the most speci�c sententialforms and proceeds upwards towards more general sentential forms, ultimately reaching thesentence symbol of the grammar. Proofs of this kind are usually referred to as bottom upproofs. In contrast to top down proofs bottom up proofs are data directed in the sense thatthe availability of speci�c data provides guidance for the proof process. [Win83, page 91]In a grammar it is possible to have several derivations that are equivalent, in the sensethat all derivations use the same productions at the same places, but in di�erent order.Example 2.1.4 An example of a second derivation in G0 would beE) T + E by 1 E ! T +E) T + T by 2 E ! T) T + F � T by 3 T ! F � T) T + F � F by 4 T ! F) T + F � a by 6 F ! a) T + a � a by 6 F ! a) F + a � a by 4 T ! F) a + a � a by 6 F ! aThe de�nition of when two derivations are equivalent is a complex matter for unre-stricted grammars, but for context-free grammars a convenient graphical representative ofan equivalence class of derivations called a derivation tree can be de�ned. [AU72, page 139]A derivation tree, or parse tree, for a context-free grammar G = (N;�; P; S) is a labeledordered tree in which each node is labeled by a symbol fromN[�[fhig. If an interior node

18 CHAPTER 2. BACKGROUNDis labeled A and its direct descendants are labeled X1; X2; : : : ; Xn, then A! X1; X2; : : : ; Xnis a production in P .E E ! T + E ET + E T ! F ETF + E F ! a ETFa + E E ! T ETFa + ETT ! F � T ETFa + ETF � T F ! a ETFa + ETFa � T T ! F ETFa + ETFa � TF
F ! a ETFa + ETFa � TFaFigure 2.1: Parse Tree for Left to Right DerivationDe�nition 2.12 A labeled ordered tree D is a derivation tree or (parse tree) for a context-free grammar G(A) = (N;�; P; A) if1. The root of D is labeled A.2. If D1; :::; Dk are the subtrees of the direct descendants of the root and the root of Diis labeled Xi, then A! X1; X2; :::; Xn is a production in P . Di must be a derivationtree for G(Xi) = (N;�; P;Xi) if Xi is a nonterminal symbol, and Di is a single nodelabeled Xi if Xi is a terminal symbol.3. Alternatively, if Di is the only subtree of the root of D and the root of D1 is labeledhi, then A! hi is a production in P .

2.1. LANGUAGE DEFINITION 19Example 2.1.5 Let us illustrate how to draw a syntax tree for the derivation of the sen-tence a + a � a of the grammar G0 of Example 2.1.1. To begin with, the distinguishedsymbol E of the grammar is designated as the root of the syntax tree. To indicate the �rstderivation a branch is drawn downward from it. A branch is the set of lines together withthe nodes (the symbols) below the line. Reading from left to right, the nodes of the newlyintroduced branch form the string corresponding to the right hand side of the productionused in the derivation step (E ! T +E).To indicate the second derivation step a branch is drawn downward form the end nodeof the syntax tree labeled T representing the application of the rule T ! F . The end nodesof a syntax tree are those nodes which have no branches emanating downward from them.Continuing in this manner yields the syntax diagrams shown in Figure 2.1E E ! T + E ET + E E ! T ET + ET T ! F � T ET + ETF � T T ! F ET + ETF � TFF ! a ET + ETF � TFa
F ! a ET + ETFa � TFa

T ! F ETF + ETFa � TFa
F ! a ETFa + ETFa � TFaFigure 2.2: Parse Tree for Right to Left DerivationBy drawing syntax diagrams as above the syntactic structure of an input sentence can

20 CHAPTER 2. BACKGROUNDbe determined from the sequences of productions used to derive that string.It is most instructive to draw the syntax diagram for the alternative derivation of thesentence a + a � a of L(G0) to illustrate the notion of equivalence of derivations, shown inFigure 2.2.Both derivations lead to the construction of the same syntax tree, indicating the equiv-alence of the two derivations.The �rst derivation is an example of a leftmost derivation, i.e. the strategy of attemptingto expand the leftmost nonterminal in any given sentential from. The second derivationillustrates the strategy of attempting to expand the rightmost nonterminal in any givensentential form, which for this reason is known as a rightmost derivation. In general theequivalence of all derivations of a given sentence of a context-free grammar is not guaranteed.Nor indeed is the uniqueness of leftmost or rightmost derivations.De�nition 2.13 A context-free grammar is said to be ambiguous if there is at least onesentence w in L(G) with two or more distinct leftmost (or rightmost) derivations. [AU72,I. p. 143]2.1.3 Syntax StructuresDe�nition 2.14 If two grammars generate the same language, the grammars are said tobe equivalent.Example 2.1.6 shows a grammar that generates the same language as the grammar in2.1.1. The two grammars di�er only two rules 1 and 3. Considering rule 1 it is apparent,that in the second grammar, the left-most nonterminal of the rule is the same as the non-terminal on the left-hand side of the arrow. Such a rule, is called left recursive. Theparse-tree for the derivation of the sentence a + a � a according to the second grammar isshown in Figure 2.3. The parse tree shown in Figure 2.2 can be seen to `lean' towards theright. Whereas the parse-tree corresponding to the derivation of the same sentence thatuses the grammar with the left recursive rules, can be seen to lean towards the left. Thestructural di�erences between the syntax structures that these equivalent grammars imposeon the sentences of the languages that they de�ne become signi�cant, when interpretationsare assigned to them.Consider the following expression: a� a� a

2.1. LANGUAGE DEFINITION 21By convention, a� a� a is equivalent to (a� a)� a = �a. When an operand has the sameoperators to its left and right, conventions are needed for deciding which operator takesthat operand.E ! E + TEE + T E ! T EET + T T ! F EETF + T F ! a EETFa + T T ! T � F EETFa + TT � FT ! F EETFa + TTF � F F ! a EETFa + TTFA � F F ! a EETFa + TTFa � FaFigure 2.3: Parse Tree for Left Recursive GrammarExample 2.1.6 An example of an equivalent grammar G1 = (fE; T; Fg ;fa;+; �; (;)g ; P; E) where P consists ofE ! E + T 1E ! T 2T ! T � F 3T ! F 4F ! (E) 5F ! a 6

22 CHAPTER 2. BACKGROUNDL(G1), the language de�ned by the grammar G0, is the set of arithmetic expressions thatcan be built up using the symbols a;+; �; (; and):De�nition 2.15 An operator is said to be left associative if an operand which has theoperator in question on both sides of it is taken by the operator on the left.For example, the arithmetic operator for subtraction is left associative, whereas exponen-tiation is right-associative. That is to say, the expression 2^4^3 is treated as (2 ^ (4 ^3)).Left-associative operators are generated by left associative grammars, like G1. Right-associative operators are generated by right-recursive grammars.2.2 ParsingThe process used to determine if a string can be generated by a given grammar is calledparsing. Most parsing methods are either top-down or bottom up. In top down parsingderivation steps are used in going from the start symbol towards the terminal symbols.In bottom-up parsing reduction steps are used in going from terminal symbols towardsthe start symbol of the grammar. Parsing methods can also be classi�ed as deterministicor predictive, in which case choices made in selecting derivation or reduction steps canbe guaranteed to be right. Parsing which involves choices between rules that cannot bedetermined unambiguously, are called non-deterministic. When there are choices, it maybe that a wrong route is taken, in which case backtracking occurs, to explore other possiblechoices. Deterministic parsing is to be preferred to non-deterministic methods. Thereare several methods that can be used to ensure that the parsing can proceed withoutbacktracking. These normally involve reformulations of the grammar. Left-factoring is oneof these techniques. It will be introduced next.2.2.1 Left-FactoringLeft factoring is a grammar transformation technique that is used to make a grammar suit-able for predictive parsing.[ASU86, 178-9] It involves the identi�cation of common pre�xesin alternative productions for a given nonterminal and rewriting the grammar in a waythat will factor out this common pre�x and thereby defers the otherwise non-deterministicchoice of which alternative to expand �rst.For example, consider the productions

2.2. PARSING 23S ! if E then S else S (2.1)j if E then S (2.2)These two production share a common pre�x. The right choice between the alternativescannot be made by examining the �rst input symbol. Neither is it possible to determinethe number of symbols that need to be examined to make the right choice. The right choicecan only be made once the common pre�x of the two productions, if E then S has beensuccessfully expanded. At that point, if the next input token is else than the �rst ruleis applicable, otherwise it is the second. In general, if A ! ��1 and A ! ��2 are twoproductions for A, and the input begins with a sequence of terminal symbols derivable from�, we cannot tell, in advance which rule is applicable. It is possible to rewrite this grammarin such a way that the decision needs only be made after the common pre�x has beenexpanded. At that point the right rule can be selected deterministically. The left-factoredform of the example is S ! if E then S 0 (2.3)S0 ! else S (2.4)j S (2.5)(2.6)or in general it takes the form: A ! �A0 (2.7)A0 ! �1j�2 (2.8)2.2.2 Limited Backtrack Top-Down ParsingThis section introduces a formalism for language de�nition and syntactic recognition thatis tied to a particular top down, left to right parsing algorithm with limited backtracking. 1In appearance, the formalism will be indistinguishable from a Context-Free Grammar.The di�erence will be in the way alternatives for a given nonterminal will be treated. Back-tracking will be limited by making the order in which alternatives for a given nonterminalappear matter for the syntactic recognition process that will take place. That is to say, thealternates for each nonterminal will be tried exhaustively until one alternate has been found1The following account is based on chapter 6 of[AU72]

24 CHAPTER 2. BACKGROUNDwhich derives a pre�x of the remaining input. Once such an alternate is found, no otheralternates will be tried. Of course, the \wrong" pre�x may have been found, in which casethe algorithm will not backtrack but will fail. Fortunately, this aspect of the algorithm israrely a serious problem in practical situations, provided the alternates are ordered so thatthe longest is tried �rst.According to the technique introduced here, nonterminals are treated as string-matchingprocedures. To illustrate this technique suppose that that a1 : : : an is the input string andthat a partial left parse have been successfully generated matching the �rst i � 1 inputsymbols. If nonterminal A is to be expanded next, then the nonterminal A can be \called"as a procedure, with input w = ai : : : an. If A derives a terminal string that is a pre�x ofw = aiai+1 : : :an then A is said to succeed on input w = ai : : : an. Otherwise, A fails oninput w = ai : : :an.These procedures call themselves recursively. If A was called in this manner, A itselfwould call the nonterminals of its �rst alternate, �1. If �1 failed, then A would restore theinput string to what it was when A was �rst called, and then A would call �2, and so forth.If �j succeeds in matching w = aiai+1 : : : ak, then A returns to the procedure that called itand sets the input string to the unmatched portion w = ak+1 : : :an.The di�erence between the current algorithm and a fully backtracking one is that shouldthe latter fail to �nd a complete parse in which �j derives aiai+1 : : :ak, then it will backtrackand try derivations beginning with productions A! �j+1, A! �j+2, and so forth, possiblyderiving a di�erent pre�x of �i : : :�n from A. This algorithm will not do so. Once it hasfound that �j derives a pre�x of the input and that the subsequent derivation fails tomatch the input, the parsing algorithm returns to the procedure that called A, reportingfailure. The algorithm will act as if A can derive no pre�x whatsoever of ai : : :an. Thusthe algorithm may miss some parses and may not even recognise the same language as itsunderlying Context Free Grammar de�nes.Consider the following example.Example 2.2.1 If S ! AcA ! ajabare productions and the alternates are taken in the order shown, then the limited backtrackalgorithm will not recognise the sentence abc. The nonterminal S is called with input abcwill call A with abc. Using the �rst alternate, A reports success and sets the input stringto bc. However, c does not match b, so S reports failure on input abc. Since A reported

2.2. PARSING 25success the �rst time it was called, it will not be called to try the second alternate. Notethat this di�culty can be avoided by writingA ! abjaThe \top-down parsing language", TDPL, introduced in this section can be used to describeparsing procedures of this nature. A statement (or rule) of TDPL is a string of one of thefollowing forms: A! BC=DA! awhere A;B;C and D are nonterminal symbols and a is a terminal symbol, the emptystring, or a special symbol f (for failure).De�nition 2.16 A TDPL program P is a 4-tuple (N; T;R; S), where1. N and T are �nite disjoint sets of nonterminals and terminals.2. R is a sequence of TDPL statements such that for each A in N there is at most onestatement with A to the left of the arrow, and3. S is in N is the start symbol.A TDPL program can be described as a set of procedures (the nonterminals) which are calledrecursively with certain inputs. The outcome of a call will either be failure, (no pre�x ofthe input is matched or recognised) or success (some pre�x of the input is matched).The following sequence of procedure calls results from a call of a statement of the formA! BC=D, with input w:1. First, A calls B with input w. If w = xx0 and B matches x, then B reports success.A then calls C with input x0.(a) If x0 = yz and C matches y, then C reports success. A then returns successand reports that it has matched the pre�x xy of w.(b) If C does not match any pre�x of x0, then C reports failure. A then calls Dwith input w. Note that the success of B is undone in this case.2. If, when A calls B with input w, and B cannot match any pre�x of w, then B reportsfailure. A then calls D with input w.

26 CHAPTER 2. BACKGROUND3. If D has been called with input w = uv and D matches u, a pre�x of w, then Dreports success. A then returns success and reports that it has matched the pre�xu of w.4. If D has been called with input w and D cannot match any pre�x of w, then D reportsfailure. A then reports failure.Note that D gets called unless both B and C succeed. Note also that if both B and Csucceed then the alternate D can never be called.The special statements A! a, A! hi, and A! f are handled as follows:1. If A ! a, is the rule for A with a 2 T and A is called on an input string beginningwith a, then A succeeds and matches this a. Otherwise, A fails.2. If A! hi is the rule for A, then A succeeds whenever it is called and always matchesthe empty string.3. If A! f is the rule, A fails whenever it is called.The notion of a nonterminal \acting on an input string" can be formalised as follows:De�nition 2.17 Let P = (N; T;R;S) be a TDPL program. A set of relations are de�nedn)p from nonterminals to pairs of the form (xjy; r), where x and y are in T � and r is either s(for success) or f (for failure). The metasymbol j is used to indicate the position of thecurrent input symbol. The subscript P will be dropped wherever possible.1. If A! hi is in R, then A 1)(jw; s) for all w 2 T �.2. If A! f is in R, then A 1)(jw; f) for all w 2 T �.3. If A! a is in R, with a 2 T , then(a) A 1)(ajx; s) for all x 2 T �.(b) A 1)(jy; f) for all those y 2 T � (including hi) which do not begin with the symbola.4. Let A! BC=D be in R.(a) Am+n+1) (xyjz; s) ifi. B m)(xjyz; s) andii. C n)(yjz; s).

2.2. PARSING 27(b) A i)(ujv; s), with i = m+ n+ p+ 1, ifi. B m)(xjy; s) andii. C n)(jy; f), andiii. D p)(ujv; s), where uv = xy.(c) A i)(jxy; f), with i = m+ n+ p+ 1, ifi. B m)(xjy; s) andii. C n)(jy; f), andiii. D p)(jxy; f),(d) Am+n+1) (xjy; s), ifi. B m)(jxy; f) andii. D n)(xjy; s).(e) Am+n+n+1) (jx; f), ifi. B m)(jxy; f) andii. D n)(jx; f).The relations n) do not hold except when required by (1)-(4).Case (4a) takes care of the case in which B and C both succeed. In (4b) and (4c), Bsucceeds, but C fails. In (4d) and (4e), B fails. In the last four cases, D is called andalternately succeeds and fails. Note that the integer above the arrow indicates the numberof \calls" which were made before the outcome is reached. Observe also that if A n)(xjy; f),then x = hi. That is, failure always resets the input pointer to where it was at the beginningof the call.De�nition 2.18 Let A+)p (xjy; r), if and only if A n)P (xjy; r) for some n � 1.The language de�ned by P , denoted L(P), is fwjS +)P (wj; s) and w 2 T �g.Example 2.2.2 Let P be the TDPL program (fS;A;B; Cg; fa; bg;R; S) where R is thesequence of statements S ! AB=CA ! aB ! CB=AC ! b

28 CHAPTER 2. BACKGROUNDThe action of P on the input string aba using the relations de�ned above is as follows.To begin, since S ! AB=C is the rule for S, S calls A with input aba. A recognises the�rst input symbol and returns success. Using part (3) of the previous de�nition we canwrite A 1)(ajba; s). Then, S calls B with input ba. Since B ! CB=A is the rule for B,the behaviour of C on ba will have to be examined. We �nd that C matches b and returnssuccess. Using (3) we write C 1)(bja; s).Then B calls itself recursively with input a. However, C fails on a and so C 1)(ja; f).B then calls A with input a. Since A matches a, A 1)(aj; s). Since A succeeds, the secondcall of B succeeds. Using rule (4d) we write B 3)(aj; s).Returning to the �rst call of B on input ba, both C and B have succeeded. Thus, byusing rule (4a) we can write B 5)(baj; s).Now returning to the call of S, both A and B have succeeded. Thus, S matches abaand returns success. Using rule (4a) we can write S 7)(abaj; s). Thus, aba is in L(P).It is not di�cult to show that L(P) = ab� + a.An important property of a TDPL is that the outcome of any program on a given inputis unique. The interested reader can �nd the proof in [AU72, 461].2.2.3 Extensions to TDPLThe notation introduced for a TDPL to this point was designed for ease of presentation.In practical situations it is desirable to use more general rules. For this purpose, extendedTDPL rules will be introduced. Their meaning will be de�ned in terms of the basic rules:De�nition 2.19 1. The rule A! BC is taken to stand for the pair of rules A! BC=Dand D ! f , where D is a new symbol.2. The rule A! B=C is taken to stand for the pair of rules A! BD=C and D ! hi.3. The rule A! B is taken to stand for the rules A! BC and C ! hi.4. The rule A! A1A2:::An; for n > 2, is taken to stand for the set of rules A! A1B1,B1 ! A2B2; : : : ; Bn�3 ! An�2Bn�2;5. The rule A ! �1=�2= : : :=�n; where �is are strings of nonterminals, is taken tostand for the set of rules A! B1=C1; C1 ! B2=C2; : : : ; Cn�3 ! Bn�2=Cn�2; Cn�2 !Bn�1=Bn; and B1 ! �1; B2 ! �2, . . .Bn ! �n. If n=2, these rules reduce toA ! B1=B2, B1 ! �1, B2 ! �2. For 1 � i � n if j�ij = 1, Bi can be let as �i andthe rule Bi ! �i can be eliminated .

2.2. PARSING 296. The rule A! �1=�2= : : :=�n; where the �'s are strings of nonterminals and terminals,is taken to stand for the set of rules, A ! �01=�02= : : :=�0n; and Xa ! a for eachterminal a, where �0i is �i with each terminal a replaced by XaHenceforth extended rules of this type will be allowed in TDPL programs. The de�ni-tions above provide a mechanical way of constructing an equivalent TDPL program thatmeets the original de�nition.These extended rules have natural meanings. For example, if A has the rule A !Y1Y2:::Yn; then A succeeds of and only if Y1 succeeds at the input position where A iscalled, Y2 succeeds where Y1 left o�, Y3 succeeds where Y2 left o�, and so forth.Likewise, If A has the rule A ! �1=�2= : : :=�n;, then A succeeds if and only if �1succeeds where A is called, or if �1 fails, and �2 succeeds where A is called, and so forth.2.2.3.1 Left RecursionTDPL can also be extended to handle left recursive rules: Let A! B=AC; be in R.(7) (a) i. If B m)(xjy; s),ii. C ni)(uijvi; s), for some 1 � i � k, where u1v1 = y and uivi = vi�1 andiii. C p)(jvk; f),then A r)(xu1 � � �ukjvk; s), with r = m+ n1:::nk + p+ 1,(b) If i. B m)(xjy; s),ii. C p)(jy; f),then Am+p+1) (xjy; s).(c) If i. B m)(ju; f),then Am+1) (ju; f).In case (a) B succeeds and then C succeeds k times successively before failing A thenreturns successfully.In (4b) and (4c), B succeeds, but C fails. In (4d) and (4e), B fails. In the last fourcases, B is called and alternately succeeds and fails. Note that the integer above the arrowindicates the number of \calls" which were made before the outcome is reached.To allow extended forms of left recursive rules add to the extension rules the following:

30 CHAPTER 2. BACKGROUND(8) The rule A! B=A�1= � � �=A�n for n >= 2, where �is are strings of terminals and ornonterminals, is taken to stand for the set of rules A! AC=D and C ! �1= � � �=�n.With this extension the left recursive verison of grammar G0 for arithmetic expressionson page 21 can be interpreted as an extended TDPL program. Note that other rules forextensions may be needed to translate the de�nition for C in the above rule for extension.

2.3. SYNTAX-DIRECTED TRANSLATION 312.3 Syntax-Directed TranslationThis section introduces the concepts and terminology of Syntax-Directed Translations.Translations will be �rst explored from an abstract point of view and then extensionsto the basic de�nitional framework to enhance its expressive power will then be considered.De�nition 2.20 A translation is a set of pairs (x; y) of �nite-length strings, where x isa string over some �nite input alphabet and y is a string over some �nite output alphabet.The strings x and y are called input string and output string, respectively. y is said to bethe translation of x. The set of all strings x, for which there is a translation y, is calledthe input language. Analogously, the set of all strings y, for which there is a correspondinginput string x, is called the output language.A Translation Scheme is a grammar with a mechanism for producing an output for eachsentence generated. A transducer is a recogniser which can emit a �nite-length string ofoutput symbols on each move.2.3.1 Translation and SemanticsIt has been pointed out that the formal notion of a language introduced earlier is devoid ofany concept of meaning. With the introduction of the notion of translation this restrictioncan be removed. One way of conceiving of semantics, or meaning, of a language is toassociate with each sentence of the language another string which is to be taken to describethe meaning of the original sentence. This way of construing the task of de�ning thesemantics of a formal language can be made to work if, in a given context, we can regardthe output language of the translation to be semantically primitive. Such speci�cation ofthe meaning of a language is known as translational semantics.2.3.2 Syntax-Directed Translation SchemataThe problem of �nitely specifying an in�nite translation is similar to the problem of spec-ifying an in�nite language. A device which given an input string x, calculates an outputstring y such that (x; y) is in a given translation T, is called a translator for T. There areseveral features which are desirable in the de�nition of a translation:1. The de�nition of the translation should be readable. That is to say, it should be easyto determine what pairs are in the translation.2. It should be possible to mechanically construct an e�cient translator for that trans-lation directly from the de�nition.

32 CHAPTER 2. BACKGROUNDFeatures which are desirable in translators are1. E�cient operation. For an input string w of length n, the amount of time required toprocess w should be linearly proportional to n.2. Small size.3. Correctness. It would be desirable to have a small �nite test such that if the translatorpassed this test, this would be a guarantee that the translator works correctly on allinputs.One formalism for de�ning translations is the syntax-directed translation schema. [AU72,I pp. 215-216] Intuitively, a syntax-directed translation schema is simply a grammar inwhich translation elements are attached to each production. Whenever a production isused in the derivation of an input-sentence, the translation element is used to help computea portion of the output sentence associated with the portion of the input sentence generatedby that production.Example 2.3.1 Consider the following translation schema which de�nes the translationf(x; xR)jx 2 f0; 1g�g. That is, for each input x, the output is x reversed. The rules de�ningthis translation are Production Translation Element(1) S ! 0S S = S0(2) S ! 1S S = S1(3) S ! hi S = hiAn input-output pair in the translation de�ned by this schema can be obtained by generatinga sequence of pairs of strings (�; �) called translation forms, where � is an input sententialform and � and output sentential form. The Translation form (S; S) is considered �rst.The �rst rule can then be applied to this form. To do so, �rst S is expanded �rst using theproduction S ! 0S. The output sentential form S is then replaced by S0 is in accordancewith the translation element S = S0. For the time being, the translation element canbe thought of simply as a production S ! S0. The translation form (0S; S0) is thusobtained. S can be expanded in this new translation form by using rule (1) again to obtain(00S; S00). Rule (2) can then be applied, to obtain (001S; S100). Applying rule (3) resultsin the translation form (001; 100). No further rules can be applied to this translation formand thus (001; 100) is in the translation de�ned by this translation schema.

2.3. SYNTAX-DIRECTED TRANSLATION 33A translation schema T de�nes some translation �(T). A translator �(T) can be builtfrom the translation schema that works as follows. Given an input string x, the translator�nds (if possible) some derivation of x from S using the productions in the translationschema. Suppose that S = �0) �1) �2) :::�n = x is such a derivation. Then thetranslator creates a derivation of translation forms(�0; �0)) (�1; �1):::) (�n; �n)such that (�0; �0) = (S; S), (�n; �n) = (x; y), and each �i is obtained by applying to �i�1the translation element corresponding to the production used in going from �i�1 to �i atthe \corresponding" place. The string y is an output for x. Often the output sententialform can be created at the time the input is being parsed (as in Meta-Lisp).Example 2.3.2 Consider the following translation scheme which maps arithmetic expres-sion of L(G0) into fully parenthesised pre�x notation:Production Translation ElementE ! T + E E = (+ T E)E ! T E = TT ! F � T T = (� F T)T ! F T = FF ! (E) F = EF ! a F = aThe translation element E = (+ T E) is associated with the production E ! T+E. Thetranslation element says that the translation associated with E on the left of the production,is �rst an opening parenthesis, followed by a plus sign, the translation of T , the translationassociated with E on the right of the production, and a closing parenthesis.The output for the input a+a �a can be determined by �nding a leftmost derivation ofa+ a � a from E using the productions of the translation scheme. Then the correspondingsequence of translation forms is computed as shown:(E;E)) (T + E; (+ T E))) (F + E; (+ F E))) (a+E; (+ a E))) (a+ T; (+ a T))) (a+ F � T); (+ a (� F T)))) (a+ a � F); (+ a (� a F)))) (a+ a � a; (+ a (� a a)))

34 CHAPTER 2. BACKGROUNDA parse tree showing the translations at each node is called an annotated parse tree.The annotated parse tree for the above translation is shown in �gure 2.3.2.E = (+ a (* a a))T = aF = aa + E = (* a a)T = (* a a)F = aa * T = aF = aaFigure 2.4: Annotated Parse TreeThe translation schemata in Examples 2.3.1 and 2.3.2 are special cases of an importantclass of translation schemata called syntax-directed translation schemata.De�nition 2.21 A syntax-directed translation schema (SDTS for short) is a 5-tuple T =(N;�;�; R; S), where1. N is a �nite set of nonterminal symbols.2. � is a �nite input alphabet.3. � is a �nite output alphabet.4. R is a �nite set of rules of the form A ! �; �, where � 2 (N [�)�, � 2 (N [�)�,and the nonterminals in � are a permutation of the nonterminals in �.5. S is a distinguished nonterminal in N , the start symbol.Let A ! �; � be a rule. To each nonterminal of � there is associated an identicalnonterminal of �. If a nonterminal B appears only once in � and �, then the associa-tion is obvious. If B appears more than once, we use integer superscripts to indicate theassociation. This association is an intimate part if the rule. For example, in the ruleA ! B(1)CB(2); B(2)B(1)C, the three positions in B(1)CB(2) are associated with positions2; 3; and 1, respectively, in B(2)B(1)C.

2.3. SYNTAX-DIRECTED TRANSLATION 35We de�ne a translation form of T as follows:1. (S; S) is a translation form, and the two S's are said to be associated.2. If (�A�; �0A�0) is a translation form, in which the two explicit instances of A areassociated, and if A ! ; 0 is a rule in R, then (��; �00�0) is a translation form.The nonterminals of and 0 are associated in the translation form exactly as theyare associated in the rule. The nonterminals of � and � are associated with those of�0 and �0 in the new translation form exactly as in the old. The association will againbe indicated by superscripts, when needed, and this association is an essential featureof the form.If the forms (�A�; �0A�0) and (��; �0 0�0), together with their associations, are relatedas above, then we write (�A�; �0A�0) �)T (��; �0 0�0). We use +)T , �)T , and k)T to stand for thetransitive closure, reexive transitive closure, and k-fold product of)T . As is customary weshall drop the subscript T whenever possible.The translation de�ned by T, denoted �(T), is the set of pairsf(x; y)j(S; S) �)T (x; y); x 2 �� and y 2 ��gThis is not very realistic. In terms of expressive power it is rather limited. The transla-tion elements can be generalised to be of arbitrary functions of the translations associatedwith the nonterminals of the underlying grammar.2.3.3 Attribute GrammarsAn attribute grammar is context-free grammar in which each grammar production A ! �has associated with it a set of semantic rules of the form b := f(c1; c2; : : : ; ck) where f is afunction and either1. b is a synthesised attribute of A and c1; c2; : : : ; ck are attributes belonging to thegrammar symbols of the production, or2. b is an inherited attribute of one of the grammar symbols on the right side of theproduction, and c1; c2; : : : ; ck are attributes belonging to the grammar symbols of theproductionAn attribute b is said to depend on c1; c2; : : : ; ck. The functions in semantic actions cannothave side-e�ects.

36 CHAPTER 2. BACKGROUNDSynthesised attributes are used to pass information from the leaves towards the root.The value of an inherited attribute, on the other hand is de�ned in term of attributes atthe parent and/or siblings of that node.

Chapter 3Overview of Meta-LispMeta-Lisp is a programming language that combines the functional model of LISP withthe syntax-directed model. As in the case of all functional languages, function applicationis the major computational mechanism. Modern functional languages like HOPE and ML,use pattern matching as their parameter-passing mechanism. That is, as the mechanism toselect the appropriate statement from the body of the function from a set of statements onthe basis of the values of the actual arguments. The main advantage of the resulting patterndirected invocation is that it combines a limited form of testing of the appropriateness ofthe arguments of a function, with the selection of their components, it also selects thetransformation appropriate for the arguments.Meta-Lisp, in contrast, uses syntax-directed invocation. A Meta-Lisp function takesa single argument, a list. The set of valid input lists is de�ned by a grammar. Eachrule of this grammar has semantic actions associated with it. These rules are not onlyused to specify the set of valid inputs to a given function, but also to prescribe arbitrarilycomplex transformations of components of the input. These components, therefore, canbe \preprocessed" by the syntax-directed translation that is used to accept them, evenbefore they are passed to the appropriate semantic action for further transformation. This\preprocessing" of the components of the input is responsible for the main methodologicaladvantage of Meta-Lisp: its support for data abstraction and level wise programming.The case studies that follow this chapter will elaborate this point fully. Before this could bedone it is necessary to develop an intuitive understanding of Meta-Lisp as a programminglanguage.The aim of this Chapter is then to introduce all the constructs of the language on aninformal basis. It assumes familiarity with the concept of syntax-directed translation andthe limited backtrack top-down parsing language (TDPL) introduced in Chapter 2. The37

38 CHAPTER 3. OVERVIEW OF Meta-LispChapter is organised as follows. Meta-Lisp is �rst introduced by two small examples,in Section 1. These examples illustrate most features of the language. In particular thesecond example conveys some of the avour of language oriented programming in Meta-Lisp. Section 2 introduces the translation formalism of Meta-Lisp. Section 3 deals withthe Semantic Language. The Chapter closes with a discussion of some of the design issuesof Meta-Lisp.3.1 Introductory ExamplesThe �rst example introduced in this Section is a reformulation, in Meta-Lisp of the sim-ple translator presented in Example 2.3.2 on page 33 in the previous Chapter. It servesto illustrate the basic features and workings of the core of Meta-Lisp as a syntax-directedtranslation schema. The second example de�nes a function to calculate the symbolic deriva-tive of arithmetic expressions involving addition and multiplication. It illustrates some ofthe more advanced linguistic features of Meta-Lisp. More importantly, it illustrates thesupport that Meta-Lisp provides for the methodology of representation independent orlevel-wise programming.3.1.1 Simple TranslationExample 2.3.2 in Chapter 2 presented the de�nition of a translation from in�x to fullyparenthesised pre�x notation of arithmetic expressions involving the operations of additionand multiplication. The speci�cation of this translation inMeta-Lisp is presented in Figure3.1 alongside the original de�nition.The notational di�erences can be easily identi�ed:� `!' is replaced by `:'� the nonterminal on the left of the arrow is written only once, thus allowing the rulesfor a given non-terminal to be treated as a single unit.� the semantic actions which correspond to the translation elements are marked by `='without repeating the name of the nonterminal� if semantic actions are not given, as in rules 2, 4 and 6, the default semantic action isto return the translation of the last successfully expanded component� the presence of a pair of parentheses, (), in the input are indicated by matching squarebrackets []

3.1. INTRODUCTORY EXAMPLES 39Figure 3.1: SDT Schema in Meta-LispProduction Translation Element META-LISPEE ! T +E E = (+ T E) 1 : T + E = [+ T E]E ! T E = T 2 : TTT ! F � T T = (� F T) 3 : F * T = [* F T]T ! F T = F 4 : FFF ! (E) F = E 5 : [E] = EF ! a F = a 6 : aElementary De�nitions+: '+*: '*a: 'a� the introduction of a pair of matching parentheses in the translation element is re-placed by a pair of square brackets, indicating the formation of a list of given compo-nents� There are three further rules in the Meta-Lisp formulation of this example. Thesecorrespond to the convention of distinguishing between non-terminal and terminalsymbols in the original translation scheme. The symbols +, * and a in rules 2, 3 and6 are not terminal symbols. They are de�ned by elementary de�nition, which statethat they should match terminal symbols.The translation schema on the left de�nes a translation independent of any parsing algo-rithm, and indeed it allows for a complete separation of parsing and the computation of theappropriate translation forms. In contrast, the translation formalism of Meta-Lisp is tied

40 CHAPTER 3. OVERVIEW OF Meta-Lispto a particular parsing algorithm and the translations are computed at the time the input isbeing parsed. This is achieved by treating the nonterminals of the underlying grammar astranslation procedures. As a translation procedure is called with some input, it tries to ex-pand each of its rules in turn, until one rule succeeds in �nding a translation of some pre�xof the input. The expansion of a rule involves calls to translation procedures correspondingto the nonterminals of the rule with input that was left behind by the preceding successfulexpansions. Once each component of a rule is expanded successfully, the semantic actionsis evaluated to compute the appropriate translation of the successfully parsed pre�x of theinput. This, otherwise simple, picture is complicated somewhat by the use of left-factoring(see Section 2.2.1). As an illustration of the translation process of Meta-Lisp consider thetrace of the translation of the input (a + a * a) shown in Figure 3.3 In the trace `>' indi-cates the call of a translation procedure with input following the `:'; `<' marks the returnof a call, where the `:' is followed by the matched pre�x, and the `=' sign is followed by thetranslation produced.The translation is constructed as the left-most derivation of the input is found. Figure3.2 shows the parse tree for the input (a + a * a) annotated with the translations pro-duced. This example have illustrated the use of Meta-Lisp as a translator writing tool.The next section will illustrate its real power as a general purpose programming language.Figure 3.2: Decorated Parse TreeE = (+ a (* a a))T = aF = aa ++ E = (* a a)T = (* a a)F = aa �� T = aF = aa

3.1. INTRODUCTORY EXAMPLES 410> E : (a + a * a) E is called with input (a + a * a)1> T : (a + a * a) E calls T , the �rst component of its �rst rule2> F : (a + a * a) T calls F , the �rst component of its �rst rule3> a : (a + a * a) The �rst rule of F requires the �rst element of the inputto be a list. This is not the case, hence F calls on thesingle component of its second rule a<3 a : a = a a matches the �rst element of the input and returns a<2 F : a = a F returns successfully with a2> * : (+ a * a) T calls �, the second component of its �rst rule<2 * : = fail! the call to � fails as * does not match +<1 T : a = a the �rst rule of T fails, but as the single component ofthe second rule, F , to be considered next, is the same asthe �rst component of the �rst rule for T , T returnsa, the outcome of the call to F1> + : (+ a * a) E now calls the second component of its �rst rule +<1 + : + = + + matches the �rst element of the input + and returns it1> E : (a * a) E calls itself recursively, as the third component of its �rstrule with the remaining input a * a2> T : (a * a) as before E calls T3> F : (a * a) and T calls F4> a : (a * a) and F expands its second rule by calling a<4 a : a = a a matches the �rst element of the input and returns it<3 F : a = a F returns successfully3> * : (* a) T calls �, the second component of its �rst rule<3 * : * = * � succeeds this time3> T : (a) T calls itself recursively, as the third component of its �rstrule with the remaining input (a)4> F : (a) as before, T calls F5> a : (a) and F calls a<5 a : a = a a matches the �rst element of the input and returns it<4 F : a = a F returns successfully4> * : () T calls �, the second component of its �rst rule<4 * : = fail! � fails<3 T : a = a as before, T returns the outcome of F<2 T : a * a = (* a a) following the successful expansion of the �rst rule of Tthe associated semantic actions [* F T] is evaluatedto return a list of the translations of �, F and T2> + : () E now calls + the second component of its �rst rule<2 + : = fail! + now fails<1 E : a * a = (* a a) with left-factoring the recursive call to E returns with T<0 E : a + a * a = (+ a (* a a)) the expansion of the �rst rule of E now succeeds, havingmatched the input (a + a * a), the semantic action[+ T E] is then evaluated to return a list of thetranslations of +, T and E.Figure 3.3: The Trace of a Simple Translation

42 CHAPTER 3. OVERVIEW OF Meta-Lisp3.1.2 Symbolic Di�erentiationThe problem of calculating the symbolic derivative of algebraic polynomials is one of theoldest and most widely used example of symbolic manipulation in the literature. 1 JohnMcCarthy, the inventor of LISP, used this problem for one of his examples in [McC60].In the LISP 1.5 Primer by Clark Weissman, [Wei67], a complete program is presented forthe di�erentiation of algebraic polynomial, including input and output. John Allen in theAnatomy of LISP, [All78], used this problem as the vehicle of teaching the importance ofadopting a representation independent style of programming. In the Structure and Interpre-tation of Computer Programs, [ASS85], the example of symbolic di�erentiation is used toillustrate the idea of data abstraction. Programs for symbolic di�erentiation can be foundin the literature on Prolog and ML. The motivation for using this problem, both as anintroductory example and as one of the main case studies in this dissertation, is twofold.The �rst is to allow direct comparison with solutions o�ered in other languages (LISP, Pro-log and ML). Secondly, since it is a problem that exhibits many of the common featurescharacteristic of symbolic computation, its discussion can bring to sharper focus many im-portant methodological issues. This section is devoted to the discussion of methodologicalissues while constructing a program in Meta-Lisp for calculating the symbolic derivativeof arithmetic expression involving the operations of addition and multiplication.In this section only the following rules of di�erentiation will be considered:ddxc = 0 (3.1)ddxu = 8<: 1; if u = x0; else (3.2)ddx(u+ v) = ddxu+ ddxv (3.3)ddx(uv) = v ddxu+ u ddxv (3.4)(3.5)The �rst rule says that the derivative of a constant is zero; the second rule applies forvariables, the third gives the rule for sums and the fourth for products. Given that theprogram for this problem will be called deriv, the following Meta-Lisp grammar rules canbe used to de�ne the set of valid input:1the problem of proving theorems in propositional calculus enjoys a similar status

3.1. INTRODUCTORY EXAMPLES 43deriv: Const x: Var x: Sum x: Prod xIn the above grammar the categories Const, Var, Sum and Prod are intended to de�ne theclass of constants, variables, sums and products, respectively. For the �rst two rules, it isstraightforward to formulate semantic actions appropriate for the task. The derivative of aconstant is just zero. The �rst rule is then simply:: Const x = 0Note, that the role of Const here is simply to recognise the appropriate component of theinput, so that the right semantic action for dealing with it can be selected. Note also, thatthe value of the semantic action associated with the this rule does not depend on the actualvalue of the constant in the input.In the case of di�erentiating a variable, however, it is not su�cient to recognise thepresence of a variable as the �rst component of the input, but it is also necessary to compareit with the di�erentiation variable to determine the value of deriv. This requires the actualcomponents of the input to be passed to the semantic action. Thus Var and x in this caseserve not only the purpose of recognition, but also the purpose of selection of the appropriateelements of the input. The derivative of a variable is 1, if it is the di�erentiation variable,otherwise it is zero. Assuming that Var refers to a variable recognised in the input, and xrefers to the variable of di�erentiation, the appropriate semantic action for the second rulecould be written using LISP-like syntax as (if (same Var x) 1 0), giving the rule:: Var x = (if (same Var x) 1 0)Every function in a semantic action is required to be be de�ned in terms of further Meta-Lisp de�nitions. if is a primitive of Meta-Lisp, with the usual meaning. same canbe de�ned in terms of the built in LISP function eq. The pseudo rule of the form:: with lisp hfunctioni, is used to designate a LISP function to be used as a seman-tic function. The de�nition of same can be given as:same: with lisp eqUnlike variables and constants, both sums and products have internal structure, viz. twooperands u and v. Hence, Sum and Prod will be required not only to analyse the input, but toextract these operands from it. In Meta-Lisp this can be achieved by the use of synthesisedattributes. (see page 57) Thus, for example, Sum will have two synthesised attributes,

44 CHAPTER 3. OVERVIEW OF Meta-Lispdenoted as u@Sum and v@Sum, representing the addend and the augend of the sum. In termsof these attributes the appropriate semantic action to express the rule of di�erentiation foraddition can be formulated as: (make-Sum (deriv u@Sum x) (deriv v@Sum x)), wheremake-Sum is an abstract constructor of elements of the domain Sum, and deriv is a recursivecall to the program that is being de�ned. Again it looks like a LISP function call, but infact it is an example of a syntax-directed invocation. E.g., the �rst recursive call to deriv willtake a single argument, a list comprising the extracted components named u@Sum and x.Then it will be the responsibility of deriv (again) to determine whether the �rst componentis a constant, a variable, or again a sum or a product, etc. Note, that without consideringthe possibility of elaborating the semantic functions themselves in a language oriented way,deriv could not even be de�ned! Clearly, there is not much point in de�ning the input witha grammar, just to �nd that it is then required to de�ne deriv in C, LISP or Prolog as in aconventional translator-writing systems.The handling of products is analogous to the way sums are treated. This gives, as the�rst level elaboration of the symbolic di�erentiation program, the following Meta-Lispde�nition:deriv: Const x = 0: Var x = (if (same Var x) 1 0): Sum x = (make-Sum (deriv u@Sum x) (deriv v@Sum x)): Prod x = (make-Sum(make-Prod (deriv u@Prod x) v@Prod)(make-Prod u@Prod (deriv v@Prod x)))Points to note about this de�nition:� it is abstract in the sense that it makes no commitment for the actual representation(in terms of list structures) of the domains of interest.� all the complexity of relating the abstract properties of the input (that a Sum hastwo components) to concrete representation (whether it be pre�x, in�x or post�x oranything else) are hidden in the appropriate de�nitions for all the subfunctions beingintroduced as components in the grammar rules.� all the complexity of constructing appropriate representation for elements of abstractdomains are hidden in the form of domain constructors in the semantic actions, suchas make-sum and make-prod which construct elements of the domain of sums andproducts, respectively.� the algorithm (in this case for calculating the derivative) can thus be formulated by\passing o�" the job of recognition, selection and construction of appropriate elements

3.1. INTRODUCTORY EXAMPLES 45of the domain of interest to sub-functions. No change in the concrete representationof the data will require any change in the above formulation of the algorithm. This isthe essence of level-wise programming. [All78, 55]The general technique of isolating parts of a program that deal with how data ob-jects are represented from those parts that deal with how they are used is called dataabstraction.[ASS85, 72] It is a powerful design methodology much appreciated and prac-ticed within the LISP tradition. It is instructive to compare the above de�nition of derivwith its de�nition in Scheme 2 taken from [ASS85, 106]:(define (deriv exp var)(cond ((constant? exp) 0)((variable? exp)(if (same-variable? exp var) 1 0))((sum? exp)(make-sum (deriv (addend exp) var)(deriv (augend exp) var)))((product? exp)(make-sum(make-product (multiplier exp)(deriv (multiplicand exp) var))(make-product (deriv (multiplier exp) var)(multiplicand exp))))))Writing representation-independent programs in LISP is clearly a matter of style anddiscipline. Note also, that in LISP the recognition of instances of abstract data and theirselection is the job of separate functions. (e.g., sum? will recognise instances of a sum,but its components have to be selected by two further functions augend and addend). Notonly does this enforce a somewhat arti�cial division, but it can be a source of ine�ciency.The separation of recognition and selection can lead to ine�ciency as it necessitates theexamination of the same data twice: once for the purpose of recognising a given instance;and again to select a desired component of it. Meta-Lisp, in contrast, makes it possible tocombine both tasks in one functional unit, called an abstract analyser. The explicit supportthat Meta-Lisp gives for describing the abstract properties of the input means that itsupports data abstraction and level-wise programming explicitly.To carry on with the example, all the subfunctions introduced in the �rst-level de�nitionneed to be de�ned.Constants are numbers. LISP provides a built in function to recognise numbers. Thecondition that the �rst element of the input should be a number, as recognised by the built-in function numberp, can be expressed in Meta-Lisp using the pseudo rule of the form:: is hpredicatei. With this the de�nition for Const becomes:2Scheme is a modern dialect of LISP. [GLSS75] It was invented by Guy Lewis Steele Jr. and Gerald JaySussman of the MIT Arti�cial Intelligence Laboratory.

46 CHAPTER 3. OVERVIEW OF Meta-LispConst: is numberpVariables are single lowercase character symbols. The easiest way to de�ne this class isto enumerate them, using the pseudo rule : any hobjecti1 : : :hobjectinVar: any a b c d e f g h i j k l m n o p q r s t u v w x y zx is a variable, so it can be de�ned in terms of Var:x: VarAssuming a fully parenthesised in�x notation as a concrete representation of sums, theirstructure can be described by writing:Sum: [augend + addend]Sum is required to make available the two components addend and augend as synthesisedattributes, called u and v. Assignment of synthesised attributes take the following form inMeta-Lisp: (@ hattribute namei <- htermi). Using this form, and noting that a sequenceof semantic terms can be given in a semantic action, the de�nition for Sum becomes:Sum: [augend + addend] = (@ u <- augend) (@ v <- addend)Similarly for ProductProd: [multiplicand * multiplier] = (@ u <- multiplicand) (@ v <- multiplier)make-Sum may use some rudimentary simpli�cations { such as carrying out addition ifboth addend and augend are numbers; returning one of them if the other is zero { beforeconstructing an appropriate internal representation for sums, if all else fails.make-Sum: a=number b=number = (add a=number b=number): zero b = b: a zero = a: a b = [a + b]where add is de�ned asadd: with lisp +

3.1. INTRODUCTORY EXAMPLES 47and a and b are de�ned so as to accept the �rst element of the current input using the rule: _ . The rational for such a permissive description of the input to make-Sum is that itpresumably will have received input that has been produced by other components of thewhole program. In some other circumstances it might be necessary to be more restrictive.What has been shown so far of design of the program should be su�cient to illustratethe following important points about Meta-Lisp:� it is integrated with LISP, both in the sense of relying on LISP to supply recognisersfor primitive domains, such as numbers, as well as for primitive semantic functions,such as eq.� it supports data abstraction and level-wise programming by making possible the com-bination of the functions of recognition, and selection in a single functional unit. Thisis due to the increase in expressive power that syntax-directed invocation brings.� enables the design of every non-primitive functional component of a program to bedesigned in a language oriented styleAbove all, this example has emphasised the role of data abstraction. The rule based formof program formulation ofMeta-Lisp together with the ability to designate arbitrary com-plex transformations to pass parameters for further transformations, has important furthermethodological implications which goes beyond the support it gives to data abstraction.This point will be taken up in the case studies. The following two sections will introduceall the features of the language.

48 CHAPTER 3. OVERVIEW OF Meta-Lisp3.2 Translation FormalismThis section describes the translation formalism ofMeta-Lisp. The presentation will followa top-down sequence. First, the concept of aMeta-Lisp translation procedure is introduced,and the grammatical means of de�ning them in terms of other translation procedure and interms of elementary de�nitions which do not make reference to other translation procedures.3.2.1 Non-Elementary Rules3.2.1.1 Alternateshpi: hpi1;1 hpi1;2 � � � hpi1;i = hsemantic actioni1: hpi2;1 hpi2;2 � � � hpi2;j = hsemantic actioni2...: hpin;1 hpin;2 � � � hpin;k = hsemantic actioninThe meta-symbol `:' designates the beginning of a grammar rule. The symbol `=' sepa-rates the rule from the semantic action. A grammar rule is composed of constituents whichare nonterminals of the grammar.The procedural interpretation of the above de�nition is as follows: hpi �rst attemptsto expand its �rst alternate, i.e. consecutively calls the constituent procedures of the �rstalternate. If the translation of the �rst constituent succeeds, meaning that some pre�x ofthe input has been accepted and some value has been produced by procedure hpi1;1, thenhpi calls the procedure hpi1;2 with the remaining input. If the consecutive calls to all theconstituent procedures appearing in the �rst alternate are successful, then procedure hpievaluates the associated semantic action, and returns its value. If there is no semanticaction attached to the rule,(i.e., there is no `=' followed by a semantic action), then hpireturns the value produced by the last constituent procedure of the rule.If any of the consecutive calls to the procedures hpi1;1hpi1;2 � � � hpi1;i fails, then theexpansion of the �rst alternate fails. If that happens, procedure hpi backtracks by restoringthe input to what it was when hpi was called, and then attempts to expand its secondalternate, and so forth. If the expansion of all the alternates fails then hpi returns failure.The distinctive feature of the translation algorithm outlined above is that the alternatesfor each nonterminal are tried exhaustively until one translates a pre�x of the input. Oncesuch an alternate is found, the procedure returns successfully. However, the algorithm willnot backtrack to try the further alternates of the procedure once it has returned successfully,

3.2. TRANSLATION FORMALISM 49as in full backtracking algorithms. This aspect of the algorithm dictates that the alternatesare to be ordered so that the one that can translate the longest pre�x is presented �rst.In formulating a de�nition for a procedure hpi it does not concern us how the constituentprocedures are de�ned. At this stage we simply assume that over the range of valid inputthat they themselves de�ne, they will produce appropriate results.Multiple occurrences of the same constituent in a rule are allowed. If the semantic actionrefers to such a component, its value is taken to be the value of the last occurrence.The procedural interpretation of alternatives given here does not cover the use of leftrecursive alternates; i.e., when hpii;1 = hpi for some 1 � i � n. For the treatment of leftrecursive alternates see Section 3.2.1.3.3.2.1.2 Nested Structures [hci1 hci2 � � � hcin]A nested structure is a sequence of components enclosed by a pair of matching squarebrackets. In a grammar rule a nested structure can occur in the place of a single constituentprocedure, in which case it matches a nested list from the input. The term component isfor both constituent procedures and nested structures.The expansion of a nested structure is carried out as follows: a test is made to seewhether the next element of the input is indeed a (non-empty) list. If it is, then thecomponents enclosed by the square brackets are consecutively expanded with this list asinput. If this expansion is successful, and the entire list has been exhausted in the process,then the list, that has thus been matched, is removed from the input. The expansion ofa nested structure fails, if either the �rst element of the input is not a (non-empty) list,or the expansion of the components in the nested structure fails, or the nested list is notexhausted after the successful expansion of all the enclosed components.The combination of nested structures and alternates gives the expressive power neededto write list processing applications.Example 3.2.1 Consider the procedure that tests list membership:member% Test if an item is a member of a given list: item [] = []: item [head tail] = (if (equal item head) t (member item tail))The reference to member in the semantic action is a recursive invocation of the translationprocedure being de�ned, with an input list constructed out of the values of the constituentprocedures item and tail which are assumed to select the appropriate parameters fromthe input.

50 CHAPTER 3. OVERVIEW OF Meta-LispNote: The line beginning with the character `%' marks out a line of comment. Note alsothat the pair of square brackets in the grammar rule stands for the empty list in the input.In the associated semantic action, on the other hand, the pair of square brackets designatethe empty list as a return value.3.2.1.3 Left Recursionhpi: hpi1;1 hpi1;2 � � � hpi1;i = hsemantic actioni1...: hpim;1 hpim;2 � � � hpim;j = hsemantic actionim: hpi hpim+1;2 � � � hpim+1;j = hsemantic actionim+1...: hpi hpin;2 � � � hpin;k = hsemantic actioninAn alternate in a de�nition of a procedure hpi is called left recursive if the left-mostconstituent procedure appearing in the grammar rule of the alternate is the same as theprocedure that is being de�ned. A procedure hpi is called left recursive if it has at least onenon left recursive alternate followed by one or more left recursive alternates. 3The interpretation of a left recursive procedure is as follows: �rst the non-left recursivealternates are tried in order. If none of them succeeds then the expansion of hpi returnsfailure. If one of them succeeds and produces value v1 while reducing the input to x1, thenregard the left recursive call to hpi in the left recursive alternate(s) as already successfullyexpanded with v1 as its value and x1 as the input that it left unmatched. With thisassumption, the expansion of the left recursive alternates does not call hpi. If the expansionof one of the left recursive alternates, tried in order, is successful, produces value v2 andreduces the input to x2, then the expansion of the left recursive alternates is repeated,with the assumption that the call to hpi had been successful with value v2 and x2 as theunmatched portion of the input. This process is iterated until it leads to failure, in whichcase hpi returns the last successfully produced value, and restores the input to what it wasbefore the last unsuccessful expansion.Example 3.2.2 The translation of binary numerals into decimal representation of wholenumbers is best described using left recursion:3Presenting the left recursive alternatives before the non left recursive ones is also allowed withoutchanging the meaning of the construct as de�ned below. The important point is not to mix them.

3.2. TRANSLATION FORMALISM 51binary: bit: binary bit = (+ (* 2 binary) bit)The following is a trace of its execution, where > indicates the call of a translation procedurewith input following the colon; < marks the return of a call, where the colon is followed bythe matched pre�x, and the equal sign is followed by the return value:1> binary : (1 1 0 1 + 1 1 0)2> bit : (1 1 0 1 + 1 1 0)<2 bit : 1 = 1<1 binary : 1 = 11> binary : (1 0 1 + 1 1 0)2> bit : (1 0 1 + 1 1 0)<2 bit : 1 = 1<1 binary : 1 1 = 31> binary : (0 1 + 1 1 0)2> bit : (0 1 + 1 1 0)<2 bit : 0 = 0<1 binary : 1 1 0 = 61> binary : (1 + 1 1 0)2> bit : (1)<2 bit : 1 = 1<1 binary : 1 1 0 1 = 131> binary : (+ 1 1 0)2> bit : (+ 1 1 0)<2 bit : = fail!<1 binary : 1 1 0 1 = 13binary successfully translates the pre�x 1 1 0 1 of the input and leaves behind unmatchedthe input (+ 1 1 0).3.2.2 Elementary ComponentsElementary components specify immediate tests on the input and speci�c return valueswithout reference to other translation procedures. If the test succeeds than they removethe successfully matched one or more elements from the input. These are then returned asthe value of the elementary component. If the test fails then they report failure leaving theinput unchanged.3.2.2.1 Denotation 'hobjectihstringihkeywordi

52 CHAPTER 3. OVERVIEW OF Meta-LispThere are three di�erent ways to specify a test whether the �rst element of the input isa given object. Firstly, the object to be matched can be designated by the use of a singlequote before the object as a component in a grammar rule. Secondly, a LISP strings (e.g."this is \" a string") can be given as a component in a grammar rule to designate atest for the presence of the given string as the �rst element of the input. Thirdly, a keyword(e.g. :test) can be given as a component in a rule to designate a test for the presence ofthat keyword as the �rst element of the input.3.2.2.2 End of Input Test $The expansion of an elementary component of this form succeeds if the input is empty, andleaves the empty input unchanged. Otherwise it fails.3.2.2.3 Pre�x _or_hidenti�eriAn elementary component of this form always succeeds and matches the �rst element ofthe input. The second form is really equivalent to having a de�nition of the form:_s: _An elementary component of this form succeeds even if the input is empty. In that case,the value returned is the empty list. If the �rst element of the input represents failure, thenthat value will be returned and will cause the calling procedure to fail.3.2.2.4 Su�x ._An elementary component of this form always succeeds, matches the entire input and returnsit as its value.

3.2. TRANSLATION FORMALISM 533.2.2.5 Empty <>An elementary component of this form always succeeds, without matching any of theinput, i.e. leaves the input unchanged. The value it returns is the empty list.3.2.3 Pseudo RulesPseudo rules are so called because they look like ordinary grammar rules, but in fact havespecial interpretations. Pseudo rules have as their �rst component the symbol is, any orwith. If semantic actions are associated with a pseudo rule then if the match was successful,then the successfully matched and removed object from the input can be referenced as thevalue of the Meta-Lisp keyword appearing in the rule.3.2.3.1 Enumerationhpi : any hobjecti1 : : : hobjectin = hsemantic actioniTest: that the �rst element of the input equals any one of the hobjectii given in the rule.Remove: the matched object.Example:day : any Mon Tue Wed Thu Fri Sat Sun = (print any)3.2.3.2 Predication hpi : is hpredicatei = hsemantic actioniTest: that the �rst element of the input satis�es the LISP hpredicatei named in the rule.Remove: �rst element of the input.Example: An integer is negative, if it is an integer, tested by the Lisp predicate integerp,and if it is greater than 0. If the given integer is not greater than zero return failure.negative_int : is integerp = (if (> 0 is) is fail!)

54 CHAPTER 3. OVERVIEW OF Meta-Lisp3.3 Semantic ActionsSemantic actions are functions of the values (and possibly attributes) of translation proce-dures appearing in a grammar rule. Semantic actions comprise a non-empty sequence ofsemantic terms. There are four basic mechanisms used to build up semantic actions: con-struction of list structures, invocation of functions, assignment of attributes and sequencingof semantic terms.The function invocations have the same outward form as in Lisp, and if the functionis a built-in Lisp function, then this Lisp function is called. Otherwise, it signi�es theinvocation of a Meta-Lisp translation procedure with a single input list. The presenceof translation procedures as functions in the semantic actions presents a terminologicaldilemma. Although they are de�ned as procedures that are expected to consume someportion of their input in the course of producing a translation, in the context of semanticactions this procedural aspect of their behaviour is completely ignored. Their single role is toproduce values. So it is more appropriate to adopt the terminology of referring to translationprocedure appearing in semantic actions as semantic functions. The term e�ective conceptis introduced as a term to refer to Meta-Lisp translation procedures regardless of thecontext in which they appear. E�ective concepts are also allowed as parameters. Sincesemantic actions are invoked only once the expansion of the grammar rule with which theyare associated has succeeded, all the immediate constituent procedures of the rule havereturned some values. If these immediate constituents occur in the semantic action asparameters, then their values are referenced.3.3.1 PackagesThe unit of modularity in Meta-Lisp is called a package. The development of a programalways takes place in the context of a package. Packages are introduced by issuing thefollowing Meta-Lisp directive at the top-level of Meta-Lisp:| ?= package hnameiThe semantic functions or e�ective concepts that are invoked in a semantic action areassumed to belong to the same package as the program in which they are called. e�ectiveconcepts are imported from other packages using a pseudo rule, called a with clause.hpi : with hpackagei hnameiwhere, hpi is the name of the e�ective concept that is invoked in a semantic action andhpackagei designates the name of the module from which an e�ective concept with thegiven hnamei is to be imported.

3.3. SEMANTIC ACTIONS 553.3.2 List ConstructionThe facilities for constructing list structures are analogous to the backquote macro in Com-mon Lisp.List construction takes the form of a non-empty sequence of list elements enclosed in apair of square brackets. A list element can be either a term or a term preceded by a splicingoperator, represented by a full stop.[hei1 � � � hein]This feature allows the construction of arbitrary complex list structures. The splicingoperator is used to embed all elements of the list that it precedes.Example 3.3.1 Suppose that A = (aaa), and B = (bbb), then:[A . B] = ((a a a) b b b)[. A . B] = (a a a b b b)[A . B C] = ((a a a) b b b C)[. A] = (a a a)3.3.3 Invocation (hfunction termi hti1 : : :htin)Invocations are evaluated by the following steps:1. evaluate the hfunction termi, which should evaluate to the name of an e�ective concept, callit ec, in the current package.2. evaluate the terms hti1 . . . htin from left to right3. construct an input list, x, formed of the values of these term (e.g. x = [hti1 : : : htin]4. �nd the de�nition for ec, (which may involve importing it from another package), and expandthis de�nition with input x.The following exceptions are raised:1. If the evaluation of the hfunction termi fails, then the value of the invocation is failure.2. If the evaluation of the term hfunction termi succeeds, but it does not evaluate to the nameof an e�ective concept de�ned in the current package then� if it is an identi�er then the exception unde�ned e�ective concept is raised� if it is not an identi�er the exception Inappropriate function term is raisedNote: The application of list construction to the terms given in an invocation is implicit.This convention is adopted mainly to reduce the clutter that the introduction of pairs ofsquare brackets into an invocation would present.

56 CHAPTER 3. OVERVIEW OF Meta-Lisp3.3.3.1 Dotted InvocationIn the special case when only one term is given, if it has a list value, then it is desirableto override the implicit construction of a list. To indicate this the dot notation is used,(exploiting the equivalence: [. hti] = hti). Thus,(hpi . hti)means that procedure hpi is invoked with the value of hti as input.3.3.3.2 LISP FunctionsThe elaboration of an e�ective concept in a given package normally involves further e�ectiveconcepts, both as immediate constituents in terms of which the input to them is described,as well as those that appear in the semantic actions. Since these e�ective concepts, in turn,are expected to be elaborated in the same way, at some point procedures will have to beintroduced in the semantic actions that require no de�nitions from the user. Meta-Lispdepends on Lisp for these primitive procedures. The incorporation of primitive functionsfrom Lisp is achieved by using a variant of the with clause, in which lisp is designated asthe package name: hpi : with lisp hnameiWhen the semantic function hpi is invoked in a semantic action, the named lisp functionis applied , in the sense of Lisp, to the list that is constructed in the invocation.Example 3.3.2plus : with lisp +3.3.3.3 Calling Meta-Lisp from LISPThe user interacts with the Meta-Lisp system by `talking' to the Meta-Lisp top level (seepage 54) by issuing directives (see page 54) and running Meta-Lisp programs. E�ectiveconcepts can be invoked from within LISP with a call to the function ?=(?= heci hmodulei hinputi)The arguments to this function should evaluate to the name of an e�ective concept to beinvoked, the name of the module to which it belongs and a list that is passed to the namedconcept as its input. The module argument is optional.

3.3. SEMANTIC ACTIONS 573.3.4 Attributes3.3.4.1 Synthesised AttributesIt is sometimes desirable to compute more then one value. Such a facility is provided in theform of synthesised attributes. One can think of the value returned by an e�ective conceptas a distinguished synthesised attribute, which is referenced by the name of the concept.Contrast this with attribute grammars, which force the user to declare an attribute evenwhen only a single value needs to be computed.Synthesised attributes for a given e�ective concept are assigned by the following formof a semantic term appearing in its de�nition:(@ hattribute namei <- hti)This will create a binding for an identi�er made up of the name of the e�ective conceptthe attribute name separator @ and the given name of the attribute, binding it to the valueof the semantic term hti (see page 46).3.3.4.2 Inherited AttributesThe attribute mechanism also allows the speci�cation of inherited attributes, permitting in-formation that arises early in the translation process to a�ect the course of later expansions,in a form well-known from the literature on attribute grammars. See [Knu68, Pag81](^ hattribute namei <- hti)This will create a binding for the identi�er made up of the symbol ^ and the hattribute namei.The terminology of `inherited attributes' can be criticised on the grounds that what theabove form really de�nes is simply a local binding for a variable. The following equivalenceindeed holds:(^ hnamei <- t1) t2is equivalent to(let ((^hnamei t1)) t2)Their role is similar to the role of \pass variables" in LISA, see [Kos84, 181]. The terminherited attributes is used to highlight their role in a�ecting subsequent parses.Both forms of attribute assignements can be given in a shortened form if the attributename is the same as the name of an e�ective concept appearing in the rule. In that casethe value of the name e�ective concept is assigned to the identically named attribute. I.e.the following equivalences hold:

58 CHAPTER 3. OVERVIEW OF Meta-Lisp(@ hnamei) � (@ hnamei <- hnamei)And similarly for inherited attributes:(^ hnamei) � (^ hnamei <- hnamei)3.3.5 Conceptual Values < hidenti�eri >E�ective concepts in Meta-Lisp are �rst class objects. They can be returned as values,and passed as parameters. The piece of special syntax to indicate that a particular identi�eris to be interpreted as the name of an e�ective concept is to enclose the given identi�er ina pair of pointed brackets.3.3.6 Semantic BacktrackingIn general a semantic action involves calls to other translation procedures, so that the valueof the semantic action itself can be failure. If that happens, or equivalently, if the semanticaction evaluates to the special constant fail!, then the procedure reports failure withoutconsidering further alternates. This feature is used to force backtracking at a higher level,or to specify linguistic constraints via negation.If the programmer's intention is to consider further alternates on the return of a semanticaction with failure, this can be achieved by marking out the semantic action with thesymbol `?' instead of the usual `=' sign. The backtracking that is triggered by such anarrangement is called semantic backtracking. This provides the ability to impose contextsensitive constraints on the input, such as, elements of the input are equal, etc. Semanticbacktracking can also be used for obtaining multiple solutions, as in Prolog, see Chapter 5.3.4 DiscussionIn terms of the number of its features, Meta-Lisp is a programming language of modestsize. The syntax of Meta-Lisp, comprising just over 40 non-trivial productions, is shownin Figures 7.1 and 7.2 on pages 140-141. The main charactersitics of the language can besummarised as follows:� The underlying grammatical formalism is tied to a particular parsing algorithm

3.4. DISCUSSION 59� The language of semantic actions is an applicative language for which the order ofevaluation is �xed (left-to-right inside out).� Collection of rules for the same e�ective concept are treated as a single, named unit� exception handling has not been worked out fully.

60 CHAPTER 3. OVERVIEW OF Meta-Lisp

Chapter 4Programming in Meta-Lisp IThe purpose of the case studies presented in this chapter is twofold. First, it contributesto the development of an intuitive understanding of the constructs and idioms of Meta-Lisp through familiar examples. Secondly, these case studies allow direct comparisons withalternative programming styles. Section 1 presents a number of simple examples of listprocessing in ML as well as Meta-Lisp. Some of these examples were selected from a listof prede�ned functions in [Wik87]. Section 2 develops a complete program for SymbolicDi�erentiation in Meta-Lisp. The design of the program follows the design of a programfor symbolic di�erentiation presented in the LISP 1.5 Primer by Clark Weissman (see[Wei67]. The aim of this is to facilitate direct comparison between LISP and Meta-Lisp,both in terms of their performance and the quality of program formulation that they makepossible. The following Section presents an alternative design of the program for symbolicdi�erentiation, which takes full advantage of the higher expressive power of Meta-Lisp.Although this second design is a bit more complex, in terms of e�ciency it outperformseven the original hand written LISP code. Section 4 reuses parts of the di�erentiationprogram for approximating the roots of polynomials using the Newton-Raphson method.4.1 List ProcessingThe following section introduces some of the basic \idioms" of programming in Meta-Lispin the context of developing a number of list processing functions. These include variants offunctions to calculate the length of a list, reversing, and mapping a list, as well as functionsfor splitting, merging and sorting a list. The de�nitions for some of these functions arecompared with their equivalents in ML. The use of ML in this context serves two purposes.The �rst is to provide a convenient starting point for the development of the functions that61

62 CHAPTER 4. PROGRAMMING IN Meta-Lisp Iwill be discussed. The second is to highlight the di�erences as much as the similaritiesbetween the two languages.4.1.1 Length4.1.1.1 Naive Lengthfun len nil = 0| len (_ :: xs) = 1 + len xs;This de�nition of length in ML can be read as stating the following two rules for calcu-lating the length of a list:� the length of the empty list is 0� the length of a list comprising a head and a tail can be obtained by adding one to thelength of the tail of the listA direct transcription of this de�nition into Meta-Lisp is possible. This can be ex-pected, given that patterns can be readily described in Meta-Lisplen: [] = 0: [_ ._] = (+ 1 (len ._))The language oriented , as opposed to the above, \pattern oriented", way of elaboratingfunction de�nitions in Meta-Lisp leads to a di�erent formulation. The development oflist processing functions in the language oriented style starts with the formulation of agrammatical description of what is a list. A list is a sequence of elements enclosed inparentheses. Depending on whether lists are allowed as elements we can have at or nestedlists. One possible form that a grammatical description of lists can take is the following:list: [seq]seq: $: elem seqelem: atom: listatom: is atomThis description can be read as saying, that� a list is a sequence of elements enclosed by a pair of parentheses

4.1. LIST PROCESSING 63� a sequence forming a list can be either empty or comprising an element and a sequence� elements of a sequence that form a list can themselves be lists or atomsThere are a number of possible alternative grammatical descriptions that can be used tode�ne what a list is. The choice of which one to use, depends on the intended application.In fact, designing an appropriate grammar is a major part of the program design process.For the moment try to use the above grammatical description as the basis for de�ning thefunction length. Clearly, calculating the length of a list, boils down to calculating the lengthof a sequence. This can be expressed by writing:length.list: [length.seq]The notational convention of writing length.list, and length.seq, is intended to indicatethat the function length, that is being de�ned, is over lists and sequences, respectively.Rewriting the grammar rules for sequence with the same intention of indicating what func-tion is being de�ned we obtain the following:length.seq: length.$: length.elem length.seqIn exploiting this grammatical structure, we are invited to write down� how to obtain the length of a sequence, on the assumption, that we know the lengthof its components,� and to de�ne how the length of each component is to be obtained.Considering the �rst alternative: if the sequence is the empty sequence, and length.$tells us what its length is, we have nothing further to do, but to return its value. For thesecond alternative, we can say, that if we know the length of the element, and the length ofa sequence, that make up a sequence, than the length of a composite sequence, comprisingboth, should be the sum of the lengths of its components:length.seq: length.$: length.elem length.seq = (+ length.elem length.seq)+: with lisp +All that remains to say is, that the length of the empty sequence is zero, and that thelength of an element is one, regardless of the fact whether it be a list or an atom. This lastfact, can be reected in changing the grammatical description of an element of a sequence,by leaving its internal structure unspeci�ed:

64 CHAPTER 4. PROGRAMMING IN Meta-Lisp Ilength.$: $ = 0length.elem: _ = 1This example has already illustrated one of the most characteristic features of the lan-guage oriented style of programming: that it invites us to� de�ne the structure of the input with a suitable grammar� exploiting this structure, specify the value of a function over composite data in termsof the values of its immediate constituents,� and to give the value of non-composite data directly.The fact that in a rule every constituent can be assigned the task of arbitrary complexcomputation, on the portion of the input that it accepts, makes it possible to reect inthe formulation of the algorithm, for a given task, the composition of the input data thatis being examined. This compositionality, is the key to both writing, and understanding,Meta-Lisp de�nitions. This is worth keeping in mind, even if the notation used does notmake it so plainly and painfully obvious, as in the above example, what structure is operatedon by what functions. A terser formulation of length can be given as follows:len: [len.seq]len.seq: $ = 0: _ len.seq = (+ 1 len.seq)The advantage of bearing in mind the full version of the de�nition is that it can be readilyadopted to be used in a great variety of list-processing functions, such as for counting atomsin a nested list structurecount: [c.seq]c.seq: $ = 0: c.elem c.seq = (+ c.elem c.seq)c.elem: atom = 1: countor attening it.

4.1. LIST PROCESSING 65flat: [f.seq]f.seq: $ = []: atom f.seq = [atom . f.seq]: f.seq1 f.seq = [. f.seq1 . f.seq]f.seq1: f.seq4.1.1.2 A Better LengthAll three de�nitions of the function length, in the previous subsection, were naive in thesense of requiring space proportional to the length of the input in maintaining storage forpending recursive calls. In the list of prede�ned functions in [Wik87, 429], the naive versionis only given in the form of a comment followed by a tail-recursive de�nition:local fun len' n nil = n| len' n (_ :: xs) = len' (n+1) xsin fun len xs = len' 0 xs end;The same gain in e�ciency can be obtained in Meta-Lisp, in this case, by using left-recursion in len.seq.length: <> = 0: length elem = (+ 1 length)elem: $ = fail!: _This time elem needs to be de�ned in such a way that it excludes the empty sequence.In the right-recursive de�nition there was no need for this, as the end of input test tookplace before elem was called.The technique of using left-recursion is applicable, when the operation that we wish toapply in the semantic action is associative, as in the case for addition, above.4.1.2 Reversing a ListIn de�ning the function reverse, tail-recursion and the use of an accumulator are againdesirable:local fun rev' nil h = h| rev' (a :: r) h = rev' r (a :: h)in fun rev l = rev'

66 CHAPTER 4. PROGRAMMING IN Meta-Lisp IThe left-recursive formulation of reverse in Meta-Lisp is again simpler:reverse: [reverse.seq] = reverse.seqreverse.seq: reverse.seq elem = [elem . reverse.seq]: elem = [elem]elem: $ = fail!: _It is tempting to read it \declaratively" as:� the reversal of a sequence, comprising a sequence and an element appended to it tothe right, is obtained by constructing a list whose �rst element is the given elementand its tail is the reversal of the component sequence� the reversal of a single element is a list containing that elementThe fact that sequences are represented as lists in Meta-Lisp accounts for the use of listconstructions in the above de�nition.4.1.3 List Membershipmember.a+list: sought list = (^ sought)(member.seq . list)member.seq: $ = []: elem=sought = t: elem member.seq = member.seqelem=sought: elem = (if (equal ^sought elem) t fail!)elem : _Recall that the inherited attribute assignment (^ sought) is equivalent to(let ((^sought sought)) (?= (member.seq list)))given that sought and list have the appropriate bindings.4.1.4 Mapping a ListThe practical advantage of higher order functions lies in that they allow for common patternsof computations to be abstracted out. The most familiar example is the function map which

4.1. LIST PROCESSING 67applies a given functions to each element of a list in turn, and returns a list with the valuesof the applications. It can be de�ned in Meta-Lisp as follows:map: list function = (^ function)(map.seq . list)map.seq: $ = []: _ map.seq = [(^function _) . map.seq]4.1.5 Splitting a List into twoAgain just consider splitting a sequence of elements. Return two values in the form ofsynthesised attributes p1@split.seq and p2@split.seq.split: [split.seq] = (@ p1 <- p1@split.seq)(@ p2 <- p2@split.seq)split.seq: $ = (@ p1 <- [])(@ p2 <- []): e1 $ = (@ p1 <- [e1])(@ p2 <- []): e1 e2 split.seq = (@ p1 <- [e1 . p1@split.seq])(@ p2 <- [e2 . p2@split.seq])e1 : _e2 : _4.1.6 Merging two sorted listsA function to merge two sorted lists of integers can be de�ned as shown below:merge.parts: [i1 tl1] [i2 tl2] = (if (precedes i1 i2)[i1 . (merge.parts tl1 [i2 . tl2])][i2 . (merge.parts tl2 [i1 . tl1])]): [] list = listprecedes: with lisp <i1 : _i1 : _tl1 : ._tl2 : ._By changing the de�nition of precedes appropriately the same de�nition can be used tomerge other kinds of lists too. One possibility is

68 CHAPTER 4. PROGRAMMING IN Meta-Lisp Iprecedes: <> = ^predThis will work assuming that ^pred is bound to the name of an appropriate e�ective conceptto be used as a predicate to determine the ordering of two elements.4.1.7 SortingThe related problems of sorting and searching are fundamental in computer programming.Volume 2 of Donald Knuth \Art of Computer Programming" is devoted entirely to theseproblems. The function for sorting presented in this section is one of very many possiblesorting algorithms. It is appropriate to form the basis of a \built-in" sorting functionbecause its requires, on average, nlog(n) comparisons, which is very good when there is noa priori knowledge about the distribution of items in the list to be sorted. The divide andconquer strategy would split the list and sort the parts and then merge the result. If wemake the splitting easy, then we carry the burden of sorting in the merging. Alternativelywe can do the brunt of the work in the splitting of the list, in which case merging is trivial.The �rst choice leads to merge sort the second is called quick sort, (or rather split sort?)Using the functions for splitting and merging, introduced in the previous section mergesort can be de�ned in Meta-Lisp as follows:ms: pred list = (^ pred) (sort.list list)sort.list: sort.short_list: sort.longer_listsort.short_list: []: [i1] = [i1]sort.longer_list: [split.seq] = (merge.parts(sort.list part1@split.seq)(sort.list part2@split.seq))

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 694.2 Symbolic Di�erentiation: as in LISPThe subject of both this and the following section will be the design of a program forSymbolic Di�erentiation. Both sections will describe, in detail, a program for Symbolicdi�erentiation written in Meta-Lisp. The design of the program, presented in this section,mirrors that of a symbolic di�erentiation program presented in the �nal chapter of theLisp 1.5 Primer, see [Wei67]. The purpose of this is to allow direct comparison with LISP,both in terms of performance and quality of program formulation. The next section willpresent an alternative way of writing a program for symbolic di�erentiation in Meta-Lisp.For the design of this second program advantage will be taken of the higher expressivepowers of Meta-Lisp, not only in the way the program is formulated, but in its overalldesign. The present section will demonstrate that, for the task of writing a program forsymbolic di�erentiation, the advantages of higher-level program formulation, o�ered byMeta-Lisp, can be enjoyed without any sacri�ce in e�ciency. This is in sharp contrast tousual expectations, where gain in expressive power is usually paid for by loss in e�ciency.The main result of the following section is, if anything, even more striking. It shows that,in this particular instance, the exploitation of the higher expressive powers of Meta-Lispcan even lead to gains in e�ciency when compared to the hand coded LISP program (some40% reduction in runtime).4.2.1 Program StrategyThe program reads a polynomial constructed from the arithmetic operators and exponen-tiation in the usual in�x notation, and then prints its derivative. The program repeatedlycalculates the derivative of polynomials until told to stop (see �gure 4.1).THE DERIVATIVE OF-3(X^3 + X) + 2X^3,WITH RESPECT TO-X,IS-3 (3 x^2 + 1) + 6 x^2THE DERIVATIVE OF-B+B)*(A-B),(POORLY FORMED EXPRESSION).FINISFigure 4.1: Symbolic Di�erentiation

70 CHAPTER 4. PROGRAMMING IN Meta-Lisp IThe strategy proposed by Weissman for developing this program is to translate thegiven expression into a fully parenthesised pre�x representation, di�erentiate and simplifythat form, and translate the resulting form back into in�x form, in accordance with theusual conventions for operator precedence. The only point where the Meta-Lisp program,presented in this subsection, deviates from this overall design is that instead of pre�xnotation, it translates to and from fully parenthesised in�x notation. As will be pointedout, the use of data abstraction enables the formulation of this program in Meta-Lisp ina way that makes it easy to switch from one internal representation to the other.4.2.2 Top Level ElaborationMeta-Lisp programs are made to belong on entry to some module. The �rst step in thedevelopment of a program is to declare the module to which the program will belong:| ?= package diffIn formulating a suitable top-level de�nition, in Meta-Lisp for the program our mainconcern is the identi�cation of the immediate constituent e�ective concepts in terms ofwhich the relevant input can be captured, and the form in which these parameters are tobe transformed to obtain the output.We can break down the problem by assuming that we have two input procedures: one toread and validate an algebraic expression, named inexpr; and another, to read and validatea variable, named invar. These procedures are combined in a grammar rule prescribing theintended sequence of their call:diff: inexpr invarThe output can be speci�ed using functional composition, which takes the result of theinput procedures as parameters, giving as the top level de�nition:diff: inexpr invar = (show (simplify (deriv inexpr invar)))To express the idea that this process is to be repeated, the left-recursive form of iterationcan be used:diff: <>: diff inexpr invar = (show (simplify (deriv inexpr invar)))This will work, if we can assume, that when the user requests termination of the sessionwith the program, either inexpr or invar will return failure.

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 71As the e�ective concepts introduced in the above de�nition are each elaborated, a com-mon pattern emerges: the identi�cation of further immediate procedures and their com-bination to achieve the desired result is repeated. The attention is always focused on theimmediate constituent level. In this regard, Meta-Lisp strongly supports top-down or touse John Allen's phrase, level-wise programming.To obtain a complete program the immediate constituent concepts introduced aboveneed to be elaborated. This will lead to the introduction of further concepts until eventuallywe reach bedrock: elementary procedures and/or LISP primitives.4.2.3 Reading and Validating the InputThe overall structure of both input routines is similar. Both involve three main steps:� Prompting the User� Reading a line of input� Validating the inputAs can be seen in Figures 4.2 and 4.3, validating the input is responsible for returningfailure when the user requests termination of the session by typing a full stop.inexpr: prompt1 readl = (validexpr readl)prompt1: <> = (format t "~%THE DERIVATIVE OF-~%")validexpr: finish = fail!: [expr] = expr: error1 readl = (validexpr readl)finish: :end = (format t "~&FINIS~%") terror1: <> = (format t "~%(POORLY FORMED ~%EXPRESSION)~%")Figure 4.2: Reading and Validating an ExpressionThe second alternative of validexpr calls expr which is responsible for translating theinput line into internal representation. This will succeed if the entire line of input read formsa valid algebraic expression. If this translation fails, or if not the entire line is deemed tobe an algebraic expression, then the third alternate is taken, which issues an appropriateerror message, then reads a new line of input, and repeats the validation process.

72 CHAPTER 4. PROGRAMMING IN Meta-Lisp IReading and validating a variable is analogous, as shown in Figure 4.3invar: prompt2 readl = (validvar readl)prompt2: <> = (format t "WITH RESPECT TO-~%")validvar: finish = fail!: [var] = var: error2 readl = (validvar readl)error2: <> = (format t "~&REENTER VARIABLE")Figure 4.3: Reading and Validating a VariableReading and validating both an expression and a variable uses readl to read a line ofinput. Its de�nition is discussed in the next subsection.4.2.4 Reading a Line of InputThe line reading routine, readl, is invoked with no input. The action of the reader is governedby the last character read. Accordingly, readl �rst calls read-char to read a character fromthe current input stream and then calls readlh with the �rst character read to constructs alist of input characters using an accumulator. The steps carried out by readlh are as follows:readl: <> = (readlh (read-char) [])readlh: comma line = (reverse line): end line = :end: skip line = (readlh (read-char) line): char2digit line = (readlh (read-char) [char2digit . line]): char2symbol line = (readlh (read-char) [char2symbol . line])Figure 4.4: Reading a Line of Input� If the last character read is a comma, then that character is read and the line of input,line, that has been constructed is reversed and returned.� If the last character read signi�es the end of the session then the keyword :end isreturned, to be acted upon by �nish in validexpr and validvar.

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 73� If the last character read is a character to be skipped, it is ignored.� If the last character read is a character representing a digit, then it is converted to adigit and the reading of the input is continued with this digit added to the line readso far.� Otherwise the last character read is converted to a symbol and is added to the lineread so far.In all but the �rst two alternates the next character is read, using read-char, and readlh iscalled again. readlh uses tail recursion together with an accumulator.4.2.5 Translating into Internal RepresentationThe program speci�cation contains a grammatical description of the class of algebraic ex-pressions to be di�erentiated. The task of validating and translating algebraic expressionsfrom in�x to fully parenthesised notation is a syntax-directed translation task that can bereadily formulated in Meta-Lisp. Its de�nition is shown in Figure 4.5.It is important to emphasise that the de�nition of the translation of algebraic expres-sions into internal representation is formulated in such a way that it makes no speci�ccommitment to their precise form. That is to say, whether it be fully parenthesised in�x,pre�x, post�x or mix�x form. These details are speci�ed in the form of constructors, whichspecify how algebraic expressions are to be represented as list structures. Figure 4.6 showsthe de�nition of constructors for fully parenthesised in�x notation. Corresponding to theseconstructors there are abstract analysers that are used both to recognise algebraic expres-sions and to select their components. These are presented in Figure 4.7. Changing theunderlying representation can thus be achieved by changing the constructors to constructlist representation of algebraic expressions in a form that corresponds to their AbstractSyntax. An earlier version of the program, reported in [Laj90] was formulated without thebene�t of synthesised attributes, e.g. explicit support for data-abstraction. Reusability ofthe program was thus severely limited.

74 CHAPTER 4. PROGRAMMING IN Meta-Lisp I
expr: term: expr + term = (mk-Sum expr term): expr - term = (mk-Diff expr term)term: secondary / term = (mk-Quot secondary term): secondary mul term = (mk-Prod secondary term): secondarymul: '*: <>secondary: primary ^ constant = (mk-Power primary constant): primaryprimary: open expr close = expr: constant: varopen: '|(|close: '|)|constant: digit: constant digit = (plus (times 10 constant) digit)digit: any 0 1 2 3 4 5 6 7 8 9var: any a b c d e f g h i j k l m n o p q r s t u v w x y zFigure 4.5: Translating into Internal Representation

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 75mk-Sum: u v = [u + v]mk-Diff: u v = [u - v]mk-Quot: u v = [u / v]mk-Prod: u v = [u * v]mk-Power: u v = [u ^ v]mk-Minus: a = [- a]mk-Expr: u op v = [u op v]Figure 4.6: Constructors for Algebraic ExpressionsConst: is integerpVar: varSum: [u + v] = (@ u) (@ v)Diff: [u - v] = (@ u) (@ v)Prod: [u * v] = (@ u) (@ v)Quot: [u / v] = (@ u) (@ v)Power: [u ^ n] = (@ u) (@ n)Minus: [- a] = (@ a) [- a]Expr: [a +/- b] = [a +/- b]Figure 4.7: Abstract Analysers of Algebraic Expressions

76 CHAPTER 4. PROGRAMMING IN Meta-Lisp I4.2.6 DerivationThe following rules of di�erentiation are considered:ddxu = 0; if u 6= f(x)ddxu = 1; if u = xddx(u+ v) = ddxu + ddxvddx(u� v) = ddxu � ddxvddx(uv) = v ddxu+ u ddxvddx(u=v) = (v ddxu� u ddxv)=v2ddx(un) = nun�1 ddxuThese rules can be easily transcribed into Meta-Lisp as shown in Figure 4.8. The designof this function have already been discussed in Section 3.1.2. The inclusion of additionalrules should pose no di�culty.deriv: Const x = 0: Var x = (if (same Var x) 1 0): Sum x = (mk-Sum (deriv u@Sum x) (deriv v@Sum x)): Diff x = (mk-Diff (deriv u@Diff x) (deriv v@Diff x)): Prod x = (mk-Sum(mk-Prod v@Prod (deriv u@Prod x))(mk-Prod u@Prod (deriv v@Prod x))): Quot x = (mk-Quot(mk-Diff(mk-Prod v@Quot (deriv u@Quot x))(mk-Prod u@Quot (deriv v@Quot x)))(mk-Prod v@Quot v@Quot)): Power x = (mk-Prodn@Power(mk-Prod(mk-Power u@Power (1- n@Power))(deriv u@Power x)))x: _ Figure 4.8: Di�erentiation Rules

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 774.2.7 Simpli�cationThis part of the program handles simpli�cation of algebraic expressions, and uses the sameset of rules as the Primer example. simplify is a supervisor program that parcels the task ofsimpli�cation according to the arithmetic operators involved. There are three alternativesto be considered depending on the kind of expression involved: if the expression to besimpli�ed1. is atomic, then it is already in a simpli�ed form.2. has unary minus as its outermost operator, then it is simpli�ed accordingly.3. involves a binary operator, then the operands are �rst simpli�ed and are then passedto the corresponding simpli�cation routine.Binary operators are handled in a data-directed way. (See [ASS85, 136-142]). As shown inFigure 4.9, s.expr is responsible for recognising the presence of binary algebraic expressionsto be simpli�ed. It also analyses its input, and extracts the operands u and v. Theseoperands are simpli�ed before they are passed to the appropriate simpli�cation routinereturned by s.op. This is another illustration of the power of syntax-directed translationas a parameter passing mechanism, in that components of the input are not only selected,as would be the case with pattern matching, but the desired transformations, in this casesimpli�cation, are also applied to them.simplify: a=atom: Minus = (s.Minus (simplify a@Minus)): s.expr = (s.op@s.expr u@s.expr v@s.expr)s.expr: [u s.op v] = (@ u <- (simplify u))(@ v <- (simplify v))(@ s.op)op: any + - * /s.op: - = < s.- >: + = < s.+ >: * = < s.* >: / = < s./ >: ^ = < s.^ >Figure 4.9: Simpli�cation

78 CHAPTER 4. PROGRAMMING IN Meta-Lisp IThe actual rules used for simplifying algebraic expressions are straight-forward. Theycan produce simpler expressions, but not necessarily the simplest. As an illustration, con-sider the rules for simplifying sums. Figure 4.10 shows the way these rules are presentedon page 172 in the LISP 1.5 Primer. The rule based form of Meta-Lisp allows for aFor an expression of the form (PLUS a b) the following simpli�cation rules areused by SPLUS. Higher-numbered rules assume prior rules failed.Rule Value Line No.1. a and b = constant a + b 1112. a = 0 b 1153. b = 0 a 1124. b = constant, a 6= constant (PLUS b a)y 1135. a = b (TIMES 2 a)y 1166. a = (MINUS a1)b = (MINUS b1) (MINUS (PLUS a1 b1)y 1217. a = (MINUS a1), b = a1 0 1258. a = (MINUS a1), b 6= constant (PLUS b a)y 1269. b = (MINUS b1), a = b1 0 12810. b = (MINUS b1), a 6= constant (PLUS a b)y 12911. all else (PLUS a b)y 130y The expression is further simpli�ed by the function COLLECT.Figure 4.10: SPLUS in the LISP 1.5 Primerparticularly straight-forward way of transcribing these rules, as shown in Figure 4.11.

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 79
s.+: a=const b=const = (plus a=const b=const): a=0 b = b: a b=0 = a: a b=const = (collect [b=const + a]): a b ? (if (equal a b) (collect [2 * a]) fail!): Minusa Minusb = (mk-Minus (collect [a@Minusa + b@Minusb])): Minusa b = (if (equal a@Minusa b) 0 (collect [b + Minusa])): a Minusb = (if (equal a b@Minusb) 0 (collect [a + Minusb])): a b = (collect [a + b])Figure 4.11: SPLUS in Meta-Lisp

80 CHAPTER 4. PROGRAMMING IN Meta-Lisp IThe transcription of rule 5.: a b ? (if (equal a b) (collect [2 * a]) fail!)is interesting in that it uses the semantic backtracking feature of Meta-Lisp to impose thecontext condition that a = b. Rules 7. and 8. are combined in the alternative: Minusa b = (if (equal a@Minusa b) 0 (collect [b + Minusa]))Similarly rules 9. and 10. are combined in the alternative: a Minusb = (if (equal a b@Minusb) 0 (collect [a + Minusb]))It is instructive to compare the Meta-Lisp de�nition with the LISP original, shownin Figure 4.12. The code generated by the Meta-Lisp compiler is very similar to thishand-written code.(DEFUN SPLUS (E)(COND ((NUMBERP (CADDR E))(COND ((NUMBERP (CADR E)) (EVAL E))((ZEROP (CADDR E)) (CADR E))(T (COLLECT (LIST (CAR E) (CADDR E) (CADR E))))))((AND (NUMBERP (CADR E)) (ZEROP (CADR E))) (CADDR E))((EQUAL (CADR E) (CADDR E))(COLLECT (LIST 'TIMES 2 (CADR E))))((AND (NOT (ATOM (CADR E))) (EQ (CAADR E) 'MINUS))(COND ((AND (NOT (ATOM (CADDR E))) (EQ (CAADDR E) 'MINUS))(LIST 'MINUS(COLLECT (LIST (CAR E) (CADADR E) (CADR (CADDR E))))))((EQUAL (CADADR E) (CADDR E)) 0)(T (COLLECT (LIST (CAR E) (CADDR E) (CADR E))))))((AND (NOT (ATOM (CADDR E))) (EQ (CAADDR E) 'MINUS))(COND ((EQUAL (CADR (CADDR E)) (CADR E)) 0) (T (COLLECT E))))(T (COLLECT E)))) Figure 4.12: SPLUS in LISPThe other simpli�cation rules can be seen in Figure 4.13. It is worth pointing out, thatthis part of the program is also written in a representation independent style, althoughinternally, it uses in�x representation.

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 81s.Minus: Const = (times -1 Const): Minus = a@Minus: a = (mk-Minus a)s.-: u v = (s.+ u (s.Minus v))s.+: a=const b=const = (plus a=const b=const): a=0 b = b: a b=0 = a: a b=const = (collect [b=const + a]): a b ? (if (equal a b) (collect [2 * a]) fail!): Minusa Minusb = (mk-Minus (collect [a@Minusa + b@Minusb])): Minusa b = (if (equal a@Minusa b) 0 (collect [b + Minusa])): a Minusb = (if (equal a b@Minusb) 0 (collect [a + Minusb])): a b = (collect [a + b])s.*: a=const b=const = (times a=const b=const): a=0 b = 0: a=1 b = b: a=const b = (collect [a=const * b]): a b=0 = 0: a b=1 = a: a b=const = (collect [b=const * a]): a b ? (if (equal a b) (s.^ a 2) fail!): Minusa Minusb = (collect [a@Minusa * b@Minusb]): Minusa b = (if (equal a@Minusa b)(mk-Minus (s.^ a@Minusa 2))(collect [b * Minusa])): a Minusb = (if (equal a b@Minusb)(mk-Minus (s.^ a 2))(collect [a * Minusb])): a b = (collect [a * b])s.^: a b=0 = 1: a b=1 = a: a=atom b = (mk-Power a=atom b): Power c = (mk-Power u@Power (times n@Power c)): Minusa b=even = (s.^ a@Minusa b=even): Minusa b=odd = (mk-Minus (s.^ a@Minusa b=odd)): a b = (mk-Power a b)s./: a b ? (if (equal a b) 1 fail!): a=0 b = 0: a=1 b = (mk-Quot a b): a b=1 = a: a=const b=const = (quotient a=const b=const): a b=const = (collect [(quotient 1.0 b=const) * a]): a Minusb = (s.* a (mk-Minus (mk-Quot 1 b@Minusb))): a b = (mk-Prod a (mk-Quot 1 b))Figure 4.13: Simpli�cation Rules

82 CHAPTER 4. PROGRAMMING IN Meta-Lisp I4.2.7.1 Collectcollect is a function used in simplifying both sums, products and quotients. It providesadditional simpli�cation rules by attempting to simplify certain patterns of nested additionand multiplication. These rules are shown in Figure 4.14.collect: atom: [a=atom op b=atom] = (mk-Expr a=atom op b=atom): [a op b=atom] = (collect [b=atom op a]): [a=const + b+c] = (mk-Sum (plus a=const b@b+c) c@b+c): [a=const * b*c] = (mk-Prod (times a=const b@b*c) c@b*c): [a+b + c+d] = (mk-Sum (plus a@a+b c@c+d) (mk-Sum b@a+b d@c+d)): [a*b * c*d] = (mk-Prod (times a@a*b c@c*d) (mk-Prod b@a*b d@c*d)): [u op v] = (mk-Expr u op v)a*b: Prod = (if (Const? u@Prod){ (@ a <- u@Prod) (@ b <- v@Prod) }fail!)a+b: Sum = (if (Const? u@Sum){ (@ a <- u@Sum) (@ b <- v@Sum) }fail!)b*c: Prod = (if (Const? u@Prod){ (@ b <- u@Prod) (@ c <- v@Prod) }fail!)b+c: Sum = (if (Const? u@Sum){ (@ b <- u@Sum) (@ c <- v@Sum) }fail!)c*d: Prod = (if (Const? u@Prod){ (@ c <- u@Prod) (@ d <- v@Prod) }fail!)c+d: Sum = (if (Const? u@Sum){ (@ c <- u@Sum) (@ d <- v@Sum) }fail!)Const?: Const = t: <> = nil Figure 4.14: CollectThese rules can be understood with reference to the de�nitions of these nested patterns,such as a*b, a+b, etc. Consider the de�nition of b+c as a representative example. It refersto the sum of two expressions b and c such that b is a constant. With this, the fourth rule

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 83can be read as saying that the sum of a constant a and the sum of b and c such that b isalso a constant, can be simpli�ed as the sum of the result of adding a b together and thethe expression c.4.2.8 Show ResultThe result of derivation and simpli�cation is displayed in the usual format for algebraicexpressions which takes account of the precedence of the operators involved. The supervi-sory program for this, out, uses the same data directed technique to parcel out the task ofdisplaying the result in an in�x form, with the usual conventions for operator precedence,as was used in organising the simpli�cation of algebraic expression. As seen on Figure4.15 the task of displaying constants and variables is passed immediately to the LISP builtin function format. The task of displaying expressions, that involve unary minus, is justas straight-forward. For expressions involving binary operators, the appropriate displayroutine is selected by out expr, and is applied to the operands:show: msg out = tmsg: <> = (format t "~&IS-~%")out: Const = (format t "~S " Const) t: Var = (format t "~S" Var) t: Minus = (format t "- ") (out a@Minus): out.expr = (op@out.expr a@out.expr b@out.expr)out.expr: [a out.op b] = (@ a) (@ b) (@ op <- out.op)out.op: + = < out.Sum >: * = < out.Prod >: / = < out.Quot >: ^ = < out.Power >Figure 4.15: Display ResultThe original LISP code for the individual display routines were presented in the Primerwithout much discussion, as they were deemed to be simple enough to be followed by thereader. Hence, much of the code for the individual display routines, presented in Figure4.16, had to be reconstructed on the basis of examining the original LISP code. Somesimpli�cations have been applied to the organisation of the code, such as factoring outrepeated pieces of code. This lead to the introduction of a new function xterm which does

84 CHAPTER 4. PROGRAMMING IN Meta-Lisp Inot appear in the original formulation.out.Sum: a=const b = (out.Sum b a=const): a b<0 = (out a) (blank) (out b<0): a Minus = (out a) (blank) (out Minus): a b = (out a) (format t " + ") (out b)b<0: b=const = (if (> 0 b=const) b=const fail!)blank: <> = (format t " ")out.Prod: xterm xtermxterm: atom = (out atom): Expr = (wrap Expr): out+/-: any + -wrap: a = (princ "(") (out a) (princ ")")out.Quot: xterm pslash xterm = tpslash: <> = (format t "/")out.Power: a=atom n = (format t "~S^~S " a=atom n) t: a n = (wrap a) (format t "^~S " n) tFigure 4.16: Output RoutinesThe elementary de�nitions for the program are shown in Figure 4.174.2.9 Performance: LISP versus Meta-LispThe performance of the program written in Meta-Lisp is identical to the LISP version.Although the code generated by theMeta-Lisp compiler for e�ective concepts which de�netheir input in terms of patterns, is very similar to the original LISP code, the code generatedfor e�ective concepts that are involved in parsing the input look quite di�erent. However,it seems that the LUCID compiler eliminates all the apparent di�erences.

4.2. SYMBOLIC DIFFERENTIATION: AS IN LISP 85* c=const: '* : is numberp+ char: '+ : _- char2digit: '- : '#\0 = 0: '#\1 = 1/ : '#\2 = 2: '/ : '#\3 = 3: '#\4 = 4^ : '#\5 = 5: '^ : '#\6 = 6: '#\7 = 71- : '#\8 = 8: with lisp 1- : '#\9 = 9> char2symbol: with lisp > : char = (intern (string char))a comma: _ : '#\,a=0 d: '0 : _a=1 end: '1 : '#\.a=atom equal: is atom : with lisp equala=const format: is numberp : with lisp formatatom if: is atom : with lisp ifb intern: _ : with lisp internb=0 line: '0 : _b=1 Minusa: '1 : [- a] = (@ a) [- a]b=atom Minusb: is atom : [- b] = (@ b) [- b]b=const n: is numberp : is integerpb=even plus: is evenp : with lisp +b=odd princ: is oddp : with lisp princc quotient: _ : with lisp /

86 CHAPTER 4. PROGRAMMING IN Meta-Lisp Iread-char: with lisp read-charreverse: with listp reversesame: with lisp eqskip: any #\Newline #\Spacestring: with lisp stringtimes: with lisp *u: _v: _ Figure 4.17: Elementary De�nitions for Symbolic Di�erentiation

4.3. SYMBOLIC DIFFERENTIATION: A LANGUAGE ORIENTED DESIGN 874.3 Symbolic Di�erentiation: A Language Oriented Design4.3.1 Program StrategyIn the previous design the task of the program was partitioned in a way that involved sev-eral `passes'. I.e. the input was �rst examined, and translated into internal form, then thisrepresentation was traversed for the purpose of applying the appropriate rules of di�eren-tiation, and then it was re-examined to carry out simpli�cation. In the language orienteddesign all these passes are not required. The rules of di�erentiation and simpli�cation canbe applied to the syntactically correct forms of the input as they are parsed.4.3.2 Top-Level ElaborationThe top-level is reorganised a bit. inexpr will no longer validate the input as this will takeplace as the input is simultaneously di�erentiated and the result is simpli�ed while it isparsed and validated. In order to achieve this it is also necessary to know the variable ofdi�erentiation so that the derivative of an input variable can be computed as it is recognisedin the input. For this reason the variable of di�erentiation read by invar is used to set aninherited attribute ^x which can then be referenced in the course of di�erentiation a variable.Assuming that di�.expr will return a synthesised attribute d@diff.expr which denotes thederivative of the expression read in, the top-level elaboration of the program reads as follows:diff: <>: diff inexpr invar = (^ x <- invar)(diff.expr . inexpr)(show d@diff.expr)4.3.3 Revised Input RoutinesAs has been pointed out inexpr in this version of the program will no longer be responsiblefor the validation of the input. Its new de�nition, shown in Figure 4.18 reects this. Readingand validating a variable is unchanged from the previous version. This is indicated by thefact that it is simply imported from the previous version.4.3.4 Di�erentiating and Validating an ExpressionThere is no need for a separate supervisor program to dispatch the appropriate rules. In-stead, we need only to state the rules of di�erentiation that we would like to use, as shownin Figure 4.19.

88 CHAPTER 4. PROGRAMMING IN Meta-Lisp Iinexpr: prompt1 readl = (if (end? readl) fail! readl)prompt1: <> = (format t "~%THE DERIVATIVE OF-~%")end?: :end = (format t "~&FINIS~%") t: <>readl: with diff readlinvar: with diff invar Figure 4.18: Revised Input RoutinesNote also, that instead of constructing an internal representation for the derivative, callsto the appropriate simpli�cation routines are made as the di�erentiation rules require theuse of particular algebraic operations.The functions used for simpli�cation and the output procedures are identical to theprevious version, as are the constructors and the abstract analysers. Figure 4.20 shows thenew design of the program.4.3.5 Comparison of the two DesignsUndoubtedly the second version is somewhat more di�cult to understand at �rst glance,as it involves the use of attributes. Apart from the di�culties presented by the use ofattributes, the second program is just as easy to write and read as the �rst. In fact, byarranging for the calculation of the derivative and its simpli�cation to take place as the input�rst examined in one pass, the program becomes a fair bit shorter. More signi�cantly, thereis gain in performance as a result of this. By comparing the performance of the two variantsof the program in calculating and simplifying the derivative of a line of input, the secondversion used about 40% less CPU time than the �rst. And since the performance of the�rst version of the program written in Meta-Lisp was identical to the performance of theoriginal LISP program, we can say that, in this instance, Meta-Lisp outperforms LISPitself. It should be noted, that a similar change of design could be applied to the originalLISP program, as well. Given, the way the parser was written originally, it would not bethat simple to incorporate all the extra functionality required. As an illustration of thesedi�culties consider the original de�nition of expression shown in Figure 4.22.

4.3. SYMBOLIC DIFFERENTIATION: A LANGUAGE ORIENTED DESIGN 89d.Const: u = 0d.Var: u x = (if (eq u x) 1 0)d.Sum: du dv = (s.+ du dv)d.Diff: du dv = (s.- du dv)d.Prod: u du v dv = (s.+ (s.* v du) (s.* u dv))d.Quot: u du v dv = (s./ (s.- (s.* v du) (s.* u dv)) (s.^ v 2))d.Power: n u du = (s.* n (s.* (s.^ u (1- n)) du))Figure 4.19: Rules of Di�erentiationdiff.expr: expr $ = (@ d <- d@expr) expr: error1 inexpr = (diff.expr . inexpr)expr: term = (@ d <- d@term) term: expr + term = (@ d <- (d.Sum d@expr d@term))(mk-Sum expr term): expr - term = (@ d <- (d.Diff d@expr d@term))(mk-Sum expr (mk-Minus term))term: secondary / term = (@ d <- (d.Quot secondary d@secondary term d@term))(mk-Quot secondary term): secondary mul term = (@ d <- (d.Prod secondary d@secondary term d@term))(mk-Prod secondary term): secondary = (@ d <- d@secondary) secondarysecondary: primary ^ constant = (@ d <- (d.Power constant primary d@primary))(mk-Power primary constant): primary = (@ d <- d@primary) primaryprimary: open expr close = (@ d <- d@expr) expr: constant = (@ d <- (d.Const constant)) constant: variable = (@ d <- (d.Var variable ^x)) variableFigure 4.20: Di�erentiating and Validating an Expression

90 CHAPTER 4. PROGRAMMING IN Meta-Lisp ILet (2 y ^ 3 + y) be the input to expr� Since expr is left recursive the start-up rule (the �rst alternate) is expanded �rst. So exprcalls term.� Since term is right recursive it will attempt to expand its �rst alternate �rst, by calling the�rst component of its �rst alternate secondary.� In turn secondary calls the �rst component of its �rst alternate primary.� The �rst alternate of primary fails, since the �rst element of the input is not an openingparenthesis. Its second alternate however succeeds, since the �rst element of the input is aconstant. The derivative of the constant 2 is calculated using the rule d.Const giving 0 whichis returned as the synthesised attribute of primary. The value returned by primary is thevalue of constant i.e. 2.� Having successfully expanded the �rst component of its �rst alternate, secondary calls the nextcomponent ^. This fails. Using left-factoring, which eliminates the need for backtracking (seeFigure 3.3), secondary then returns the derivative of primary (d@primary) as its synthesisedattribute d@secondary and the value 2.� Having successfully expanded the �rst component of its �rst alternate, term calls the secondcomponent / which will fail. The second component, of the second alternate of term (i.e.mul) is expanded next via left-factoring, which will succeed (c.f. Figure 4.5 on page 74 for itsde�nition).� term is now invoked recursively with input (y ^ 3 + y), calling secondary which calls primarywhich succeeds with its third alternate variable, returning the derivative of the variable yusing d:V ar which is 1 (since y equals the value of the inherited attribute ^x, the variable ofdi�erentiation which is y, c.f. Section 4.3.2) and the matched variable y.� Having successfully expanded the �rst component (primary) of its �rst alternate, secondarycalls the next component ^, which now succeeds, indicating the presence of exponentiation.constant is then called and matches 3. d.Power is then used to compute the derivative ofy3 through appropriate simpli�cations giving (3 * (y ^ 2)) as the value of the synthesisedattribute d@secondary and (y ^ 3) { as constructed bymk-Power { as the value of secondary.� After an unsuccessful attempt to �nd further terms as part of an implicit product, the �rstrecursive call to term returns with (3 * (y ^ 2)) as its synthesised attribute and (y ^ 3)as its value.� Given the previously computed value 2 of secondary and its synthesised attribute d@secondarywhich was 0, the semantic action(@ d <- (d.Prod secondary d@secondary term d@term))(mk-Prod secondary term)is evaluated to yield (6 * (y ^ 2)) as the derivative of the product 2 y ^ 3 which is thenreturned as the synthesised attribute of term and (2 * (y ^ 3)) { as constructed by mk-Prodas the value of term.� The synthesised attribute of term is then assigned to be the �rst synthesised attribute of expr.The value of term then becomes the �rst value produced by expr. Given these values exprnow attempts to expand its left recursive rules with the remaining input: (+ y).� The expansion of the �rst left recursive rule will be successful in �nding a new term (followingthe + sign) { with value y and derivative 1. Using the values of the synthesised attributesd@expr = (6 * (y ^ 2)) and d@term = 1 d.Sum produces the derivative for the entire input((6 * (y ^ 2)) + 1).Figure 4.21: Di�erentiation in Action

4.3. SYMBOLIC DIFFERENTIATION: A LANGUAGE ORIENTED DESIGN 914.3.6 The Workings of the ProgramHere, as in the previous version of the symbolic di�erentiation program the set of validinputs to the program (the class of algebraic expressions being considered) has been de�nedexplicitly as a language. The grammatical structure thus imposed on the input, however,has not been exploited fully in the previous version. It has only been used to construct asuitable internal representation to be examined in further passes. The current version, incontrast, exploits fully the structure imposed on the input as the means of making explicitthe applicative structure of the desired computation, viz. the calculation of the derivative.It is this feature of the design of the program that makes it fully language oriented.As an illustration of how the grammatical structure is exploited to carry out the task ofdi�erentiation consider the �rst alternative of the e�ective concept secondary dealing withexponentiation:: primary ^ constant = (@ d <- (d.Power constant primary d@primary))(mk-Power primary constant)The base of exponentiation is selected and recognised by the e�ective concept primary,whereas its power is by constant. Our aim is to calculate the derivative of exponentiation ofprimary to constant power. Recall that the rule of di�erentiation for exponentiation states:ddx(un) = nun�1 ddxuThis rule is formulated in Meta-Lisp as:d.Power: n u du = (s.* n (s.* (s.^ u (1- n)) du))Note that the derivative of exponentiation is a function not only of the algebraic ex-pression that is raised to a constant power but of its derivative. Hence to apply this ruleit is necessary to make available, in addition to the algebraic expressions involved in theexponentiation, its derivative. The derivative of primary is made available as a synthesisedattribute (e.g. d@primary). And since the algebraic expression corresponding to secondaryitself may be an operand of another composite algebraic expression, its derivative is madeavailable as a synthesised attribute also, i.e. the attribute assignment:(@ d <- (d.Power constant primary d@primary))makes available at the level of term the derivative of secondary as a synthesised attribute,and a suitable representation of the algebraic expression in question as its principal valueobtained by (mk-Power primary constant). Similarly each e�ective concept involved inthe de�nition of the input language of the program will return two values: a principal valuerepresenting an algebraic (sub)expression and its derivative as a synthesised attribute.

92 CHAPTER 4. PROGRAMMING IN Meta-Lisp IThe working of the program can be best illustrated by considering a concrete exampleand following through the steps of computation as shown in Figure 4.21.The present language oriented design of the symbolic di�erentiation program improveson the previous design by making explicit not only the grammatical structure of its inputbut exploiting it to capture the applicative structure of computing the desired output. Atthe same time, it also supports data abstraction and representation independent program-ming (c.f. pages 42-43). The combination of data-abstraction and the use of grammaticalstructures to reect the applicative structures of intended computations, as illustrated bythis case study, is the essence of Language Oriented Programming.(DEFUN EXPRESSION (E)(PROG (EXP X Y OP)(COND((NULL E) (RETURN NIL))((NULL (SETQ X (TERM E))) (RETURN NIL)))(SETQ EXP (CAR X))E(COND((NULL (CDR X)) (RETURN EXP))((EQ (CADR X) '#\+) (SETQ OP 'PLUS))((EQ (CADR X) '#\-) (SETQ OP 'DIFFERENCE))(T (RETURN (CONS EXP (CDR X)))))(COND ((NULL (SETQ Y (TERM (CDDR X)))) (RETURN NIL)))(SETQ EXP (LIST OP EXP (CAR Y)))(SETQ X Y)(GO E))) Figure 4.22: The Original De�nition of expression

4.4. APPROXIMATING ROOTS 934.4 Approximating RootsThis section presents the initial design of a program to calculate the roots of di�erentiablefunctions using Newton's method. The program reuses parts of the symbolic di�erentiationprogram. Apart from illustrating the method of combining separate modules in Meta-Lispit also provides an example of a program that exploits the meta-programming capabilitiesof LISP.4.4.1 Top-Level Elaboration of newtonNewton's method for �nding the roots of a di�erentiable function y = f(x) says that if xkis an approximation to a root of the di�erentiable function f , then a better approximation,xk+1 can be obtained by the following iteration:xk+1 = xx ��where � = f(xk)f 0(xk)Figure 4.23 shows the the top-level elaboration of the program. The program reads anexpression and the independent variable used in the expression for f(x) and reads in aninitial guess. The program then translates the expression read into fully parenthesised pre�xnotation while constructing simultaneously an expression that represents its derivative.These expressions are then used to construct appropriate LISP functions that can then beused to compute both the value and the derivative of the function at given points. In doingso the program intends to \capitalise on the pun that an expression that describes the valueof a function may also be interpreted as a means of computing that value" [ASS85, 335].Given that the inherited attributes ^f and ^df denote these functions calc-root is then calledwith the initial guess to calculate the roots.newton: inexpr invar inguess = (^ f <-[lambda[invar](diff.expr . inexpr)])(^ df <- [lambda [invar] d@diff.expr])(calc-roots inguess)Figure 4.23: Top-Level Elaboration of newton

94 CHAPTER 4. PROGRAMMING IN Meta-Lisp I4.4.2 The Main Body of the ProgramIn most cases there may be more than one roots to be calculated. Hence, calculating theroots will be repeated until the user quits the program by typing q. The supervisor for theprogram is calc-roots that carries out the iteration. The calculation of the root starts withone step of improving the initial guess. The calculation of successive improvements to theoriginal guess is iterated until the value of � becomes su�ciently small.Improve returns two values: the ratio of the value of the function for a given guess andthe value of its derivative computed for the same guess (i.e. �); the second value is theimproved guess, which is obtained as the di�erence between the original guess and �. Notethat these values are computed by applying the LISP representation of these functions toappropriate argument.Figure 4.24 show theMeta-Lisp de�nitions for these functions. Note that ratio handlesthe error of attempting to divide by zero. The remaining de�nitions that complete thecalc-roots: quit: guess = (improve (float guess))(show-root (iter delta@improve guess@improve))(calc-roots (inguess))iter: delta improved_guess = (if (> (abs delta) 1.0E-10){ (improve improved_guess)(iter delta@improve guess@improve) }improved_guess)improve: guess = (@ delta <-(ratio(apply ^f [guess])(apply ^df [guess])))(@ guess <- (difference guess delta@improve))ratio: u zero = (format t "~%Attempt division by zero~%") 0: u v = (quotient u v)Figure 4.24: Calculating Rootsprogram are shown in Figure 4.25. Note that di�.expr is imported from the module diffpx,which itself is made up from the components of the second, language oriented design of thesymbolic di�erentiation program and a collection of abstract analysers and constructorsthat de�ne pre�x notation for algebraic expressions.

4.4. APPROXIMATING ROOTS 95Issues of robustness and adaptability [DJ83, 102-106] were not even addressed in thedesign of the program. As a consequence it is prone to go into an in�nite loop. Nevertheless,it has illustrated important points about program design in Meta-Lisp:� software reuse in Meta-Lisp� the power and convenience of exploiting the meta-programming capabilities of LISP� the use of Meta-Lisp in expressing numerical computationsA trace of the execution of the program is shown opposite.inexpr: prompt-expr readl = readl> : with lisp >abs : with lisp absapply : with lisp applyinguess : <> = (format t "Enter Initial Guess: ") (read)improved_guess : _delta : _difference : with lisp -diff.expr: with :diffpx diff.exprfloat : with lisp floatguess : is numberpprompt-expr: <> = (format t " ;; Calculating Roots ~%Enter Formula : ")quit : any q quitquotient : with lisp /read : with lisp readroot : _show-root: root = (format t "~%The root found is: ~S~%" root)Figure 4.25: Elementary De�nitions for newton

96 CHAPTER 4. PROGRAMMING IN Meta-Lisp IType ? for commands0> newton : nil ; l;; Calculating RootsEnter Formula : X^3-9X+4,WITH RESPECT TO-X,Enter Initial Guess: 0<1 newton : (<- ^f)= (lambda (x) (+ (+ (^ x 3) (- (* 9 x))) 4)) ;<1 newton : (<- ^df)= (lambda (x) (+ -9 (* 3 (^ x 2)))) ;1> iter : (-0.4444444444444444 0.4444444444444444) ;2> iter : (-0.010442160221895892 0.4548866046663403) ;3> iter : (-1.7486507382534088E-5 0.4549040911737228) ;4> iter : (-4.980058755359147E-11 0.45490409122352344) ;<4 iter : (-4.980058755359147E-11 0.45490409122352344)= 0.45490409122352344 ;<3 iter : (-1.7486507382534088E-5 0.4549040911737228)= 0.45490409122352344 ;<2 iter : (-0.010442160221895892 0.4548866046663403)= 0.45490409122352344 ;<1 iter : (-0.4444444444444444 0.4444444444444444)= 0.45490409122352344 ;The root found is: 0.45490409122352344Enter Initial Guess: 31> iter : (0.2222222222222222 2.7777777777777777) ;2> iter : (0.0306379678107426 2.747139809967035) ;3> iter : (5.713656040427687E-4 2.746568444362992) ;4> iter : (1.9736725112545713E-7 2.746568246995741) ;5> iter : (2.3717925759785976E-14 2.7465682469957176) ;<5 iter : (2.3717925759785976E-14 2.7465682469957176)= 2.7465682469957176 ;<4 iter : (1.9736725112545713E-7 2.746568246995741)= 2.7465682469957176 ;<3 iter : (5.713656040427687E-4 2.746568444362992)= 2.7465682469957176 ;<2 iter : (0.0306379678107426 2.747139809967035)= 2.7465682469957176 ;<1 iter : (0.2222222222222222 2.7777777777777777)= 2.7465682469957176 ;The root found is: 2.7465682469957176Enter Initial Guess: -31> iter : (0.2222222222222222 -3.2222222222222223) ;2> iter : (-0.020562368388455415 -3.201659853833767) ;3> iter : (-1.8750008829361548E-4 -3.2014723537454733) ;4> iter : (-1.5526232439317245E-8 -3.201472338219241) ;5> iter : (-3.2671222098523193E-16 -3.2014723382192405) ;<5 iter : (-3.2671222098523193E-16 -3.2014723382192405)= -3.2014723382192405 ;<4 iter : (-1.5526232439317245E-8 -3.201472338219241)= -3.2014723382192405 ;<3 iter : (-1.8750008829361548E-4 -3.2014723537454733)= -3.2014723382192405 ;<2 iter : (-0.020562368388455415 -3.201659853833767)= -3.2014723382192405 ;<1 iter : (0.2222222222222222 -3.2222222222222223)= -3.2014723382192405 ;The root found is: -3.2014723382192405Enter Initial Guess: qDone<0 newton : nil Figure 4.26: Tracing newton

Chapter 5Programming in Meta-Lisp IIThe purpose of this Chapter is to extend further the basis of evaluating the potential oflanguage oriented programming. It also serves the purpose of enabling direct comparisonwith Prolog.Section 1 presents a small Prolog program for solving the \Water Container Puzzle"[Kow79, 75]. Section 2 describes a solution to this problem developed in Meta-Lisp.Section 3 discusses the design of a program for the graphical display of parse-trees.5.1 Path FindingAny problem can be formulated as a path-�nding problem:Given an initial state A, a goal state Z, and operators which transform one stateinto another, the problem is to �nd a path from A to Z. [Kow79, 75]Given Goal| | | || | | || | | | | | | || 7l | | | |__________| | || | | 5l | | | | don't || | | | | 4l | | care || | | | | | | ||__________| |__________| |__________| |__________|both emptyFigure 5.1: The Water-Container PuzzleThe Water-Container Puzzle can be formulated as a path-�nding problem:97

98 CHAPTER 5. PROGRAMMING IN Meta-Lisp IIGiven both a seven and a �ve litre container, initially empty, the goal is to �nd asequence of actions which leaves four litres of liquid in the seven litre container.There are three kinds of actions which can alter the state of the containers:1. A container can be �lled.2. A container can be emptied.3. liquid can be poured from one container into the other, until the �rst isempty or the second is full.Prolog is ideally suited to formulate these kinds of problems. The rules that govern thetransition from one possible state to another can naturally be formulated as Prolog clauses.They are shown in Figure 5.2. In addition to de�ning the admissible state transitions theserules also associate a description of the action that these rules de�ne.The task of �nding a path is simply left to the inference mechanism of Prolog. There aremany solutions to the puzzle. In the course of �nding solutions Prolog's inference mechanismwill face non-deterministic choices. Backtracking to these choice points is automatic inProlog. Figure 5.3 shows the part of the program that is responsible for the exploration ofall possible solutions. The program constructs a list of visited states which is then used toavoid looping.state(_,Y,7,Y," Fill up 7l container ").state(X,_,X,5," Fill up 5l container ").state(_,Y,0,Y," Empty 7l container ").state(X,_,X,0," Empty 5l container ").state(U,V,0,Y," Empty 7l container into 5l container "):- Y is U + V, Y =< 5.state(U,V,X,0," Empty 5l container into 7l container "):- X is U + V, X =< 7.state(U,V,7,Y," Pour from 5l container till 7l container is full "):- Z is U + V, Z > 7, Y is Z - 7.state(U,V,X,5," Pour from 7l container till 5l container is full "):- Z is U + V, Z > 5, X is Z - 5.Figure 5.2: State Transitions in PrologFigure 5.4 shows a small portion of the output of the program.

5.1. PATH FINDING 99
g(X) :- go(0,0,X,_,[[0,0]],[" Initial State "]).go(X,_,X,_,S,P):- reverse(S,RS),reverse(P,RP),show(RS,RP), nl, write(--------), nl, fail.go(X,Y,G,_,S,P):- state(X,Y,U,V,W),\+(member([U,V],S)),\+(X=G),go(U,V,G,_,[[U,V]|S],[W|P]).show([],[]).show([S|T],[P|Q]) :- print(S), tab(1), printstring(P), nl, show(T,Q).printstring([]).printstring([H|T]) :- put(H), printstring(T).Figure 5.3: The Water-Container Puzzle in Prolog

100 CHAPTER 5. PROGRAMMING IN Meta-Lisp II[0,0] Initial State[7,0] Fill up 7l container[7,5] Fill up 5l container[0,5] Empty 7l container[5,0] Empty 5l container into 7l container[5,5] Fill up 5l container[7,3] Pour from 5l container till 7l container is full[0,3] Empty 7l container[3,0] Empty 5l container into 7l container[3,5] Fill up 5l container[7,1] Pour from 5l container till 7l container is full[0,1] Empty 7l container[1,0] Empty 5l container into 7l container[1,5] Fill up 5l container[6,0] Empty 5l container into 7l container[6,5] Fill up 5l container[7,4] Pour from 5l container till 7l container is full[0,4] Empty 7l container[4,0] Empty 5l container into 7l container--------[0,0] Initial State[7,0] Fill up 7l container[2,5] Pour from 7l container till 5l container is full[7,5] Fill up 7l container[0,5] Empty 7l container[5,0] Empty 5l container into 7l container[5,5] Fill up 5l container[7,3] Pour from 5l container till 7l container is full[0,3] Empty 7l container[3,0] Empty 5l container into 7l container[3,5] Fill up 5l container[7,1] Pour from 5l container till 7l container is full[0,1] Empty 7l container[1,0] Empty 5l container into 7l container[1,5] Fill up 5l container[6,0] Empty 5l container into 7l container[6,5] Fill up 5l container[7,4] Pour from 5l container till 7l container is full[0,4] Empty 7l container[4,0] Empty 5l container into 7l container--------[0,0] Initial State[7,0] Fill up 7l container[2,5] Pour from 7l container till 5l container is full[0,5] Empty 7l container[5,0] Empty 5l container into 7l container[5,5] Fill up 5l container[7,3] Pour from 5l container till 7l container is full[0,3] Empty 7l container[3,0] Empty 5l container into 7l container[3,5] Fill up 5l container[7,1] Pour from 5l container till 7l container is full[0,1] Empty 7l container[1,0] Empty 5l container into 7l container[1,5] Fill up 5l container[6,0] Empty 5l container into 7l container[6,5] Fill up 5l container[7,4] Pour from 5l container till 7l container is full[0,4] Empty 7l container[4,0] Empty 5l container into 7l container--------....[0,0] Initial State[7,0] Fill up 7l container[2,5] Pour from 7l container till 5l container is full[2,0] Empty 5l container[0,2] Empty 7l container into 5l container[7,2] Fill up 7l container[4,5] Pour from 7l container till 5l container is full-------- Figure 5.4: Solutions to the Water-Container Puzzle

5.2. THE WATER-CONTAINER PUZZLE IN Meta-Lisp 1015.2 The Water-Container Puzzle in Meta-LispIn contrast to the Prolog solution, in Meta-Lisp, each individual state transition is for-mulated as an e�ective concept, i.e. a functional unit on its own right. The state of thecontainers is represented as a pair of integers x and y. The result of a state transitionis formulated in terms of synthesised attributes, corresponding the the next state of thecontainers and a description of the transition that lead to this new state.f7: x y = (@ x <- 7) (@ y) (@ step <- "Fill up 7l container")f5: x y = (@ x) (@ y <- 5) (@ step <- "Fill up 5l container")e7: x y = (@ x <- 0) (@ y) (@ step <- "Empty 7l container")e5: x y = (@ x) (@ y <- 0) (@ step <- "Empty 5l container")pe7: x y = (if (>= 5 (+ x y)){(@ x <- 0)(@ y <- (+ x y))(@ step <- "Empty 7l container into 5l container")}fail!)pe5: x y = (if (>= 7 (+ x y)){(@ x <- (+ x y))(@ y <- 0)(@ step <- "Empty 5l container into 7l container")}fail!)pf7: x y = (if (> (+ x y) 7){(@ x <- 7)(@ y <- (- (+ x y) 7))(@ step <- "Pour from 5l container till 7l container is full")}fail!)pf5: x y = (if (> (+ x y) 5){(@ x <- (- (+ x y) 5))(@ y <- 5)(@ step <- "Pour from 7l container till 5l container is full")}fail!) Figure 5.5: State Transitions in Meta-LispGiven the individual state transition functions, solutions to the Water-Container Puzzleare formulated in Meta-Lisp as follows: The program takes as input some path leadingfrom the initial state to some current state. A path is represented as a list of visited states

102 CHAPTER 5. PROGRAMMING IN Meta-Lisp IIand two integers that specify the last visited state. Extending the path involves an attemptto extend a path with a given state transition function. If the current state was such that anew state can be reached by the application of some transition function, then the programattempts to extend further the path from the new state onwards. Eventually the goal statewill be reached. At that point the just completed path is printed. After which failure isreturned. This failure then causes semantic backtracking at the level of extend path, so thatthe next available, yet untried state transition is tried. Then a new attempt is made toextend the path from that point onwards. Note that if a newly reached state is not thegoal state go will test if that state had been visited, and if it had been visited, then go willcancels the last state-transition, and again forces backtracking to consider the next availablestate-transition.wcp% @(#)wcp 1.5 12/27/91: initial_path = (extend_path . initial_path)initial_path : <> = [[[0 0 " Initial State"]] 0 0]extend_path: path f7 ? (go path x@f7 y@f7 step@f7): path f5 ? (go path x@f5 y@f5 step@f5): path e7 ? (go path x@e7 y@e7 step@e7): path e5 ? (go path x@e5 y@e5 step@e5): path pe7 ? (go path x@pe7 y@pe7 step@pe7): path pe5 ? (go path x@pe5 y@pe5 step@pe5): path pf7 ? (go path x@pf7 y@pf7 step@pf7): path pf5 ? (go path x@pf5 y@pf5 step@pf5)go: path goal y step = (show_path . (reverse [[goal y step] . path]))fail!: path x y step = (if (visited? [x y] path)fail!(extend_path [[x y step] . path] x y))show_path: $ = (format t "~%~%--------"): [x y step] rest = (format t "~%[~A,~A] " x y)(princ step)(show_path . rest)Figure 5.6: The Water-Container Puzzle in Meta-LispWhat this all amounts to is that in the Meta-Lisp formulation of a path-�nding prob-lem, choice points for backtracking has to be set up explicitly by the programmer. Thisrepresents a great deal more e�ort. However, in the same way as in Prolog, there is a clearlyidenti�able programming idiom associated with these kinds of problems. Admittedly, the

5.2. THE WATER-CONTAINER PUZZLE IN Meta-Lisp 103goal : '4visited? : with listp member+ : with lisp +- : with lisp -> : with lisp >>= : with lisp >=elem : _equal : with lisp equalformat : with lisp formatlist : _path : _princ : with lisp princrest : ._reverse : with lisp reversesought : _step : _x : _y : _ Figure 5.7: Elementary De�nitions in wcpMeta-Lisp idiom is a bit more di�cult perhaps to grasp, for the �rst time, but can be justas e�ective. In fact, it can be argued, that the procedural interpretation of Prolog requiresthe programmer to visualise a very similar process, which cannot be said to be any simpler.Needless to say the output of the two programs is identical. Since it is much easier to dothese things in Meta-Lisp the output format was biased towards a form that Prolog canhandle easier.It is worth emphasising, in conclusion, that there is a lot to be said in favour of theMeta-Lisp solution to inherently non-deterministic problems, as the Water-Container Puzzle.For such problems, it is required to set up choice points and backtracking explicitly. Theadvantage of this is that when there is no need for backtracking, there is no need to worryabout how undesired backtracking can be pruned, as in Prolog.

104 CHAPTER 5. PROGRAMMING IN Meta-Lisp II5.3 Parse Tree PrintingFrom the point of view of programming methodology the graphical display of parse-treesis interesting because it presents a clear example of a programming task that can best bethought of as a compilation task.The task is simply the following. Given some representation of a parse tree, like below("expr" ("term" ("factor" "a")) +("expr"("term" ("factor" "a") "*" ("term" ("factor" "a"))))))display it in some suitable fashion. like this, say:exprtermfactora + exprtermfactora * termfactoraThe analogy with compilation can be said to go deeper, than the idea that the meaningof a program is given in terms of instructions for a computer to execute. In fact, on reectionthe need for some kind of \intermediate" code will become apparent.The form that this inter-mediate code should take is inuenced by the capabilities of thegraphics primitives that are available. The parse-tree display program of this section cangenerate both instructions for the picture environment of LATEX as well as instructions forGARNET. What really dictates the form of this intermediate representation is the logicaldependencies between structural components of what we are trying to display. Furthermore,the requirement of being able to break up a parse tree into smaller ones, that can be �ttedinto a given display size, dictates many of the design decisions, and in fact makes theconstruction of an intermediate form unavoidable.The details of these will not be given. However, Figure 5.8 illustrates the inter-mediatecode for the parse-tree shown at the beginning of the section.Figure 5.9 presents the generated LATEX code. Figure 5.10 shows the top-level elabora-

5.3. PARSE TREE PRINTING 105= (:tree 180 50 (:node "expr" 26 20)(:branches(:tree 40 50 (:node "term" 27 20)(:branches(:tree 40 50 (:node "factor" 40 20)(:branches (:leaf (:node "a" 11 20))))))(:leaf (:node + 10 20))(:tree 110 50 (:node "expr" 26 20)(:branches(:tree 110 50 (:node "term" 27 20)(:branches(:tree 40 50 (:node "factor" 40 20)(:branches (:leaf (:node "a" 11 20))))(:leaf (:node "*" 10 20))(:tree 40 50 (:node "term" 27 20)(:branches(:tree 40 50 (:node "factor" 40 20)(:branches (:leaf (:node "a" 11 20))))))))))))Figure 5.8: Parse-Tree Decorated with Display Informationtion of the translator into \intermediate" code. The heart of the �rst phase of the Parse-Treedisplay routine is the procedure that splits a tree into smaller trees if the whole tree wouldnot �t into the available display size. It is this part of the program that would be di�cult toformulate using standard compiler-compilers, say YACC. New YACC would stand a betterchance of coping with this problem. But the burden of processing in that case would fallonto the rewrite rules over the parse-tree of the parse-tree. Its only in Meta-Lisp thatsemantic processing can be speci�ed as a continuum of syntactic elaborations.

106 CHAPTER 5. PROGRAMMING IN Meta-Lisp II\begin{tiny}\setlength{\unitlength}{0.009in}%\begin{picture}(500,240)(-40,-200)%w h\thinlines\put(77.0,0){\framebox(26,20){expr}}\put(90.0,20){\line(0,1){10}}\put(20.0,-10){\line(1,0){105.0}} % BAR -\put(90.0,-10){\line(0,1){10}} % BAR -\put(6.5,-40){\framebox(27,20){term}}\put(20.0,-20){\line(0,1){10}}\put(20.0,-50){\line(1,0){0}} % BAR -\put(20.0,-50){\line(0,1){10}} % BAR -\put(0,-80){\framebox(40,20){factor}}\put(20.0,-60){\line(0,1){10}}\put(20.0,-90){\line(1,0){0}} % BAR -\put(20.0,-90){\line(0,1){10}} % BAR -\put(14.5,-200){\framebox(11,20){a}}\put(20.0,-180){\line(0,1){10}}\put(20.0,-180){\line(0,1){90}} % BAR -\put(50,-200){\framebox(10,20){+}}\put(55.0,-180){\line(0,1){10}}\put(55.0,-180){\line(0,1){170}} % BAR -\put(112.0,-40){\framebox(26,20){expr}}\put(125.0,-20){\line(0,1){10}}\put(125.0,-50){\line(1,0){0}} % BAR -\put(125.0,-50){\line(0,1){10}} % BAR -\put(111.5,-80){\framebox(27,20){term}}\put(125.0,-60){\line(0,1){10}}\put(90.0,-90){\line(1,0){70.0}} % BAR -\put(125.0,-90){\line(0,1){10}} % BAR -\put(70.0,-120){\framebox(40,20){factor}}\put(90.0,-100){\line(0,1){10}}\put(90.0,-130){\line(1,0){0}} % BAR -\put(90.0,-130){\line(0,1){10}} % BAR -\put(84.5,-200){\framebox(11,20){a}}\put(90.0,-180){\line(0,1){10}}\put(90.0,-180){\line(0,1){50}} % BAR -\put(120,-200){\framebox(10,20){*}}\put(125.0,-180){\line(0,1){10}}\put(125.0,-180){\line(0,1){90}} % BAR -\put(146.5,-120){\framebox(27,20){term}}\put(160.0,-100){\line(0,1){10}}\put(160.0,-130){\line(1,0){0}} % BAR -\put(160.0,-130){\line(0,1){10}} % BAR -\put(140.0,-160){\framebox(40,20){factor}}\put(160.0,-140){\line(0,1){10}}\put(160.0,-170){\line(1,0){0}} % BAR -\put(160.0,-170){\line(0,1){10}} % BAR -\put(154.5,-200){\framebox(11,20){a}}\put(160.0,-180){\line(0,1){10}}\put(160.0,-180){\line(0,1){10}} % BAR -\end{picture}\end{tiny} Figure 5.9: LATEX Code

5.3. PARSE TREE PRINTING 107
c.ptree: c.node= (@ x <- x@c.node)(@ y <- y@c.node)(@ trees <- [])(@ tree <- [:leaf c.node]): [c.node c.Branches]= (@ tree <-(fit-tree(max x@c.node x@c.Branches)(+ ^y-label (* 1.5 ^y-sep) y@c.Branches)c.nodec.Branches))(@ x <- x@fit-tree)(@ y <- y@fit-tree)(@ trees <- [. trees@fit-tree . trees@c.Branches])tree@c.ptreec.node: node-or-label= (@ node-or-label)(@ x <- (label-x node-or-label))(@ y <- ^y-label)[:node node-or-label x@c.node y@c.node]c.Branches: []= (@ x <- (* -1 ^y-sep))(@ y <- (* -1 ^y-sep))(@ trees <- []): c.ptree c.Branches= (@ x <- (+ x@c.ptree ^y-sep x@c.Branches))(@ y <- (max y@c.ptree y@c.ptree))(@ trees <- [. trees@c.ptree . trees@c.Branches])[tree@c.ptree . c.Branches]Figure 5.10: Calculating the Dimensions of a Tree

108 CHAPTER 5. PROGRAMMING IN Meta-Lisp II
fit-tree: x y DNode _branches= (if (fits x){ (@ x)(@ y)(@ trees <- [])(@ tree <- [:tree x y DNode [:branches . _branches]]) }{ (if (pred (elided? (xtract-max . _branches))){ (c.ptree [(node-of DNode) ??????])(@ x <- x@c.ptree)(@ y <- y@c.ptree)(@ trees <- [])(@ tree <- tree@c.ptree) }{ (fit-tree(+ (- x (x-of max@xtract-max)) (x-of-label (node-of max@xtract-max)))(+ ^y-label (* 1.5 ^y-sep) (adjust-y position@xtract-max _branches))DNode(subst-nth (mk-stub n) position@xtract-max _branches))(@ x <- x@fit-tree)(@ y <- y@fit-tree)(@ trees <- [. trees@fit-tree (mark-tree n max@xtract-max)])(@ tree <- tree@fit-tree) }) })Figure 5.11: Fitting a Tree into Displays

Chapter 6Denotational Semantics inMeta-LispDenotational semantics is a methodology for de�ning the mathematical meaning of program-ming languages and systems. The essence of denotational de�nitions is that they allow thespeci�cation of the meaning of the phrases of a language in terms of functions de�ned overthe meanings, or denotations, of their component phrases. For the purpose of denotationalde�nitions only the phrase structure of the syntax of a language is of interest. The rulesthat are used to describe the phrase structure of a language constitute the abstract syntaxof a language. The sets that are used as value spaces in programming language semanticsare called semantic domains. The meaning, or denotation of abstract syntax structures of alanguage are drawn from these domains. The mapping of the abstract syntax structures ofa language to their denotations are given in terms of valuation functions. In specifying themeaning of individual constructs of a language, the valuation functions make use of func-tions over semantic domains. These functions and their associated domains are normallypresented together in the form of semantic algebras.One advantage of denotational de�nitions is that it is possible to derive language pro-cessors, such as compilers or interpreters, directly from their denotational de�nitions. Theapproach to the construction of compilers for a language from its denotational de�nitionis known as the compile-evaluate method. [Sch86, 217]. According to this method, thevaluation functions are used as speci�cation for a translator of source programs into theirdenotation in terms of complex functional expressions. A separate evaluation phase is thenused to obtain the output of the program for given actual input. It is also possible to trans-late a program to its denotation and evaluate it simultaneously with its run time arguments.The result is an interpreter for the language derived from its denotational semantics.109

110 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-LispA number of systems have been developed to serve as tools for deriving language proces-sors directly from a denotational de�nition of their semantics. The �rst semantics directedcompiler generating system based on denotational semantics developed was Mosses's Se-mantic Implementation System (SIS). See [Mos79]. It uses the compile-evaluate method.The \machine-code" is a simple functional language, called LAMB, based on the lambdacalculus. SIS has been used to implement its own languages: the Denotational SemanticsLanguage (DSL), and the language GRAM, used for dealing with syntax matters. Themapping from DSL into LAMB is itself described in DSL. SIS is bootstrapped, very muchthe way Meta-Lisp has been implemented.Wand's Semantic Prototyping System consists of a set of programs for testing andexercising denotational style language speci�cations. The system is built largely in Scheme(a dialect of LISP), and is used to serve as an e�cient lambda-calculus interpreter. Thesystems parser generator is YACC. The denotational semantic equations, coded in Scheme,are appended to the YACC grammar rules. SPS uses a type checker that validates thedomain of de�nitions and semantic equations for well-de�nedness.Paulson's Semantic Processor (PSP) system is a semantics directed compiler generatorthat generates stack machine code. See [Pau84]. The semantic grammar notation used tode�ne a language is a hybrid of denotational semantics and attribute grammars.These systems o�er distinct advantages. Using them can ensure the correctness oflanguage implementations. They allow experimentation in the design of new languages.These experiments can also help in \debugging" formal language descriptions themselves.A common feature of these systems is that they enable the speci�cation of both theconcrete and the abstract syntax of a language, together with the speci�cation of the eval-uation rules in a form that can be interpreted to produce appropriate denotations or actualvalues. All these tasks can be readily speci�ed in Meta-Lisp. The mapping from concretesyntax of a language to its abstract syntax is a task for which Meta-Lisp is eminentlysuitable. The mapping of abstract syntax structures to their denotation, using valuationfunctions, can equally well be described in Meta-Lisp.The aim of this Chapter is to illustrate how Meta-Lisp can be used as the vehicleof writing denotational language de�nitions. The denotational de�nition of the languageof a simple Calculator will be developed alongside the description of a denotational styleinterpreter for it in Meta-Lisp. The purpose of adopting this mode of presentation is toemphasise the close correspondence between the two formulations. It also serves the purposeof introducing the format of denotational de�nitions in Meta-Lisp. The same format willbe used in the next Chapter in de�ning the semantics of Meta-Lisp itself.

6.1. THE CALCULATOR 1116.1 The CalculatorThe following description of a simple calculator and the denotational de�nition of the se-mantics of the language that it accepts is based on Chapter 4 of the book on denotationalsemantics by David A. Schmidt [Sch86].��7 8 9 IF ,4 5 6) *1 2 3 (+0 LAST ANSWERON OFF TOTALFigure 6.1: The CalculatorExpressions in the language of the calculator can be entered by pressing buttons on thedevice shown in Figure 6.1. The output appears on a display screen. The calculator cancarry out addition and multiplication. It can recall the value of the last calculation. Italso allows the user to enter a form of if-then-else expression. A session with the calculatormight go:press ONpress (4 + 1 2) * 2press TOTAL (the calculator prints 32)press 1 + LASTpress TOTAL (the calculator prints 33)press IF LAST + 1 , 0 , 2 + 4 (the second branch of the conditional is taken)press TOTAL (the calculator prints 6)press OFF Figure 6.2: Example Session with the CalculatorThe denotational de�nition of the semantics of a language consists of three parts:� the de�nition of the abstract syntax of the language.� The speci�cation of the sets and operations used to specify the meaning of the phrases

112 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lispof the language. These are usually given in the form of semantic algebras.� The speci�cation of the valuation functions which map the abstract syntax structuresof the language to their meanings drawn from semantic domains.The above format of denotational de�nitions will be reected in the organisation of theremainder of the Chapter. For the purposes of the present discussion the \Calculator" willbe identi�ed with its input language.6.2 Syntax of the Calculator LanguageFigure 6.3 gives the abstract syntax of the language of the Calculator.P 2 ProgramS 2 Expr-sequenceE 2 ExpressionN 2 NumeralD 2 DigitP ::= ON S (1)S ::= E TOTAL S (2)j E TOTAL OFF (3)E ::= E1+ E2 (4)j E1* E2 (5)j IF E1, E2, E3 (6)j LAST (7)j (E) (8)j N (9)N ::= N D (10)j D (11)D ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 (12)Figure 6.3: Abstract Syntax of the Calculator

6.2. SYNTAX OF THE CALCULATOR LANGUAGE 113The abstract syntax indicates that a session with the calculator starts by pressing the\ON" key which is followed by entering an expression sequence. An expression sequenceconsists of one or more expressions separated by a single occurrence of pressing the \TO-TAL" key. The expression sequence, as well as the session with the calculator, is terminatedby pressing the \OFF" key. The syntax for an expression speci�es only the use of the op-erators for addition and multiplication. It also allows a limited form of choice function,parentheses and \recall" of the last answer.For the purposes of providing a denotational de�nition of the semantics of a languagea mapping from the concrete to the abstract syntax of the language is assumed. Sincethe purpose of developing a denotational style de�nition in Meta-Lisp for the language ofthe Calculator is to be able to derive an interpreter from its denotational de�nition, it isnecessary to supply an appropriate mapping from the concrete to the abstract syntax. Thisinvolves the construction of the following programs:1. a reader and lexical analyser for the language (calc-lex)2. a translator of the concrete syntax of tokens of the language to a suitable internalrepresentation of the abstract syntax of the language (calc-c2a)3. A parser for the internal representation of the abstract syntax (calc-abst).The following subsections will introduce these routines.6.2.1 Lexical AnalysisThe construction of a reader/lexical analyser is a routine task. The aim is to translate thestream of input characters into tokens of the language of the calculator. Tokens will berepresented as strings, with the exception of numerals from 0 to 9. Figure 6.4 shows theinput and the corresponding output of the lexical analyser on the example session introducedearlier.The following lexical conventions are enforced by the lexical analysis routine:� the keywords of the language (ON, TOTAL, IF, LAST) as well as the reserved symbols(`+', `*', `(', `)', `,') are represented as strings,� Digits are represented as numbers from 0 to 9,The LISP reader is used this time, once the special characters such as comma, have beenread from the input. Straightforward modi�cation of the reader routine of the symbolicdi�erentiation program presented in Chapter 4 (see 4.2.4 on page 72) will do the job.

114 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lisp| ?= (calc-lex)ON(4 + 1 2) * 2TOTAL1 + LASTTOTALIF LAST + 1 , 0 , 2 + 4TOTALOFF||------------|calc-lex = ("ON" "(" 4 "+" 1 2 ")" "*" 2 "TOTAL" 1 "+" "LAST" "TOTAL""IF" "LAST" "+" 1 "," 0 "," 2 "+" 4 "TOTAL" "OFF")Figure 6.4: Lexical Analysis of the Example SessionWhite Spaces will be skipped, Special characters, such as comma and opening and closingparenthesis will be converted into strings. Any other input is read by the LISP read functionand, with the exception of numerical input, will be converted into tokens represented asstrings. The Meta-Lisp code for this is shown in Figure 6.5.Relying on the LISP reader may result in an error for incorrect input. The lexicalanalyser could be made robust by supplying a suitable de�nition of read-item, in Meta-Lisp, to handle erroneous input, as has been done in the Symbolic Di�erentiation Program.However, introduction of these re�nements would not be pertinent to the present discussion.The use of the LISP reader to process well-formed input is su�cient for the present purpose.6.2.2 Concrete to Abstract SyntaxDevising an appropriate description of the concrete syntax of the Calculator Language isfairly straightforward. Care need only be taken to respect the usual rules of precedence andassociativity of the arithmetic operators involved. The question of what concrete represen-tation to use for the abstract syntax of the Calculator language is less straightforward. Onepossible approach is to generate a parse tree and use that as the concrete representationof the abstract syntax. Note, however, that not all productions that are used in deriving asentence of the language are to be reected in the parse tree representation, if it is to beused as the concrete representation of the abstract syntax. The advantage of this approachis that in developing the mapping from concrete to abstract syntax the parse tree form can

6.2. SYNTAX OF THE CALCULATOR LANGUAGE 115calc-lex: <> = (readlh (peek) [])readlh: skip line = (read-char) (readlh (peek) line): special line = (read-char)(readlh (peek) [(string special) . line]): read line = (if (equal "OFF" read)(reverse ["OFF" . line])(readlh (peek) [read . line]))peek : with lisp peek-charskip : any #\Space #\Newlineline : _special : any #\, #\(#\)read : _ = (mk-string (read-item))read-item : with lisp readmk-string: is fixp: _ = (string _)string : with lisp stringread-char : with lisp read-charequal : with lisp equalreverse : with listp reverseFigure 6.5: Lexical Analyser for the Calculator Languagereadily be visualised in a way that makes the structures of interest apparent. The disad-vantage of the latter method is that writing a grammar for the internal representation ofthe abstract syntax will be cluttered with the names of the phrases of the language beingrepresented. An alternative approach is to represent composite phrases as lists formed oftheir components. In this way the phrase structure of the language will be readily identi-�able, with very little clutter (e.g. brackets around composite phrases). The disadvantageof this representation is that it is not as easy to make out the phrase structure from nestedlist structures as it is from parse-trees.The strategy adopted here combines the advantages of both approaches, by constructingthe de�nition of the abstract syntax of the language of the calculator in two steps. Firsta parser is written for the language represented as tokens. The parser is written in such a

116 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lispway that it can generate either a parse tree or a list structure representation of the phrasestructure of the language. The parse tree form is used to validate the parser. Figure 6.7shows the Meta-Lisp de�nition of the parser of stage 1. Figure 6.8 shows the de�nitionof the abstraction function abst which is used to construct alternatively subtrees or thecorresponding list structure representation. The list structure representation of the phrasestructure of the language is then used in the second stage. In the second stage, a grammaticaldescription of the list structure representation of the phrase structure of the language isformulated. This, in e�ect, constitutes a Meta-Lisp speci�cation of the abstract syntax ofthe language. Similarly to the parser for the concrete syntax of the language, the parserfor the abstract syntax representation is written in such a way that it can generate eithera parse tree (which will be in accordance with the abstract syntax, an abstract parse tree)or again a list structure representation of the abstract syntax. That is to say, it de�nesan identity transformation on the list structure representation of the abstract syntax ofthe language. Figure 6.9 shows the concrete derivation tree of the example session, asproduced by the parser for the Calculator Language. Figure 6.6 show the correspondinglist structure representation of the abstract syntax. Figure 6.11 shows the de�nition of theabstract syntax of the Calculator Language in Meta-Lisp. Figure 6.10 shows the abstractparse tree for the example session.("ON"((("("(4 "+" (1 2)) ")") "*" 2)"TOTAL"((1 "+" "LAST")"TOTAL"(("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4))"TOTAL""OFF")))) Figure 6.6: Internal Representation of the Abstract SyntaxComparison of the Abstract Parse tree with its concrete counterpart reveals the branch-ing structure of the two trees to be identical. It is in this sense, that the abstract tree canbe said to identify its concrete counterpart. In the abstract syntax tree only those rules inthe derivation of a sentence of the language that have semantic signi�cance are reected.Only those rules in the grammar are considered semantically signi�cant for which there arevaluation rules.

6.2. SYNTAX OF THE CALCULATOR LANGUAGE 117calc-c2a: tokens tree = (^ tree) (P . tokens)P: "ON" S = (abst 'P "ON" S)S: E "TOTAL" "OFF" = (abst 'S E "TOTAL" "OFF"): E "TOTAL" S = (abst 'S E "TOTAL" S)E: E "+" T = (abst 'E E "+" T): T = (abst 'E T)T: T "*" F = (abst 'T T "*" F): F = (abst 'T F)F: "LAST" = (abst 'F "LAST"): "(" E ")" = (abst 'F "(" E ")"): "IF" E1 "," E2 "," E3 = (abst 'F "IF" E1 "," E2 "," E3): N = (abst 'F N)E1: E = (abst 'E1 E)E2: E = (abst 'E2 E)E3: E = (abst 'E2 E)N: N D = (abst 'N N D): D = (abst 'N D)D: any 0 1 2 3 4 5 6 7 8 9 = (abst 'D any)Figure 6.7: Parser for the Calculator Languageabst: identifier ._ = (if ^tree[identifier . ._](mk-unit ._))identifier: is identifiermk-unit: [_] = _: _ Figure 6.8: Abstraction Function

118 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lisp
P

ON

SETTF
(

EETFND4 +
TFNND1 D2) *

FND
2 TOTAL

SEETFND
1 +

TF
LAST TOTAL

SETF
IF

E1EETFLAST +
TFND1 ,

E2ETFND0 ,
E3EETFND2 +

TFND4 TOTAL OFFFigure 6.9: A Concrete Derivation Tree

6.2. SYNTAX OF THE CALCULATOR LANGUAGE 119
P

ON
SEE1

(
EE1ND4 + E2NND1 D2) *

E2ND2 TOTAL
SEE1ND1 +

E2
LAST TOTAL

SE
IF E1E1LAST + E2ND1 , E2ND0 , E3E1ND2 + E2ND4 TOTAL OFFFigure 6.10: An Abstract Derivation Tree

120 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lispcalc-abst: p tree = (^ tree) (P p)P: ["ON" s] = (abst 'P "ON" (S s))S: [e "TOTAL" "OFF"] = (abst 'S (E e) "TOTAL" "OFF"): [e "TOTAL" s] = (abst 'S (E e) "TOTAL" (S s))E: [e1 "+" e2] = (abst 'E (E e1) "+" (E e2)): [e1 "*" e2] = (abst 'E (E e1) "*" (E e2)): ["IF" e1 "," e2 "," e3] = (abst 'E "IF" (E e1) "," (E e2) "," (E e3)): "LAST" = (abst 'E "LAST"): ["(" e ")"] = (abst 'E "(" (E e) ")"): n = (abst 'E (N n))N: [n d] = (abst 'N (N n) (D d)): d = (abst 'N (D d))D: any 0 1 2 3 4 5 6 7 8 9 = (abst 'D any)Figure 6.11: Abstract Syntax in Meta-LispAll the e�ective concepts p, s, e, e1, e2, e3, n and d are just place-holders, de�nedto accept input at their position. For ease of comparison the BNF rules for describing theabstract syntax of the Calculator Language are reproduced below:

6.2. SYNTAX OF THE CALCULATOR LANGUAGE 121
P ::= ON S (1)S ::= E TOTAL S (2)j E TOTAL OFF (3)E ::= E1+ E2 (4)j E1* E2 (5)j IF E1, E2, E3 (6)j LAST (7)j (E) (8)j N (9)N ::= N D (10)j D (11)D ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 (12)

122 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lisp6.3 Semantic AlgebrasThe sets that are used as value spaces in programming language semantics are called se-mantic domains. Semantic domains are really structured sets, but for most situations theirstructure, whether it be lattices or topologies, can be ignored. Accompanying a domain isa set of operations. These are functions that take arguments from the domain to produceresults. An operation is speci�ed in two parts. First, the operation's functionality is givendescribing the domains from which it draws its arguments, and its codomain, which is thedomain from which the result of the operation is drawn. For an operation f its functionalityf : D1 �D2 � � � � �Dn ! A says that f takes an argument from domain D1 and one fromD2, . . . , and one from Dn to produce a result in domain A. Second, a description of theoperation's mapping is speci�ed, usually in the form of equations. For operations which areconsidered semantically primitive, the de�ning equations are usually omitted.Primitive domains are sets that are fundamental to the application being considered.In de�ning the semantics of the Calculator two primitive domains are used: booleans andnatural numbers. The semantic domains and the functionality of the operations used in thede�nition of the Calculator are given in Figure 6.12.I. Truth valuesDomain t 2 Tr = BOperationstrue, false: TrII. Natural NumbersDomain n 2 NatOperationszero; one; two; � � � : Natplus; times : Nat� Nat! Natequals : Nat�Nat! Tr Figure 6.12: Semantic AlgebrasThe valuation functions given in the next section make use of the choice function andthe operation cons : A � A� ! A� for constructing lists. The choice function is theusual conditional expression: e1 ! e2[]e3, which has as its value e2 if e1 = true and e3 ife1 = false.In the Meta-Lisp formulation of the semantics of a language semantic algebras arereplaced by their concrete implementation. Thus, for example, the choice function is aprimitive ofMeta-Lisp, with the usual semantics as in LISP. For the operations on naturalnumbers, such as times and sum, the built in functions of LISP, * and +, will be importedin the usual manner. These will operate on LISP's representation of natural numbers. Formore complex semantic algebras appropriate Meta-Lisp de�nitions may be used.

6.4. VALUATION FUNCTIONS 1236.4 Valuation FunctionsThere are �ve valuation functions for the language of the Calculator. There is one valuationfunction corresponding to each abstract syntax domain. These are shown in Figure 6.13.The de�nition of a valuation function for an abstract syntax domain includes the descriptionof its functionality and a number of rules corresponding to the alternative constructs thatappear in the de�nition of the abstract syntax domain.P: Program ! Nat�P[[ON S]] = S[[S]](zero)S: Expr-sequence ! Nat! Nat�S[[E TOTAL S]](m) = let m0 = E[[E]](m) in m0 cons S[[S]](m0)S[[E TOTAL OFF]](m) =E[[E]](m) cons nilE: Expression ! Nat! NatE[[E1+E2]](m)=E[[E1]](m) plus E[[E2]](m)E[[E1*E2]](m)=E[[E1]](m) times E[[E2]](m)E[[IF E1,E2,E3]](m)=E[[E1]](m) equals zero! E[[E2]](m) [] E[[E3]](m)E[[LAST]](m) = mE[[(E)]](m) =E[[E]](m)E[[N]](m) =N[[N]]N: Numeral ! NatN[[N D]]=(N[[N]] times ten) plus D[[D]]N[[D]] = D[[D]]D: Digit ! NatD[[0]]= zeroD[[1]]= one...D[[9]]= nine Figure 6.13: Valuation FunctionsFigure 6.14 shows the valuation rules in Meta-Lisp. In what follows each rule will bediscussed in some detail, to build up an understanding of both formulations.

124 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lispcalc-int: p = (P p)P% Program -> (list Nat): ["ON" s] = (S s 0)S% Expr-Sequence -> Nat -> (list Nat): [e "TOTAL" "OFF"] m = [(E e m)]: [e "TOTAL" s] m = (@ m~ <- (E e m))[m~@S . (S s m~@S)]E% Expr -> Nat -> (list Nat): [e1 "+" e2] m = (plus (E e1 m) (E e2 m)): [e1 "*" e2] m = (times (E e1 m) (E e2 m)): ["IF" e1 "," e2 "," e3] m = (if (equals 0 (E e1 m))(E e2 m)(E e3 m)): "LAST" m = m: ["(" e ")"] m = (E e m): n m = (N m)N% Numeral -> Nat: [n d] = (plus (times 10 (N m)) (D d)): d = (D d)D% Digit -> Nat: any 0 1 2 3 4 5 6 7 8 9 = anyplus% Nat * Nat -> Nat: with lisp +times% Nat * Nat -> Nat: with lisp *equals% Nat * Nat -> Bool: with lisp equalFigure 6.14: Denotational Semantics of the Calculator in Meta-LispAll the e�ective concepts p, s, e, e1, e2, e3, n and d are just place-holders, de�ned toaccept input at their position.

6.4. VALUATION FUNCTIONS 1256.4.1 ProgramThere is only one equation to describe the meaning of a Program, as there is only one rulefor describing its abstract syntax:P[[ON S]] = S[[S]](zero)The function P maps a program to its meaning, which is a non-empty list of natural num-bers. This list represents the sequence of outputs displayed by the calculator during asession. It is obtained as the value of the Expression Sequence, [[S]], as created by thevaluation function S. The functionality of S states that it is a mapping from an expressionsequence, [[S]], and a natural number, (m), to a non-empty list of numbers. The extranumeric argument is used to make available the value of the most recently evaluated ex-pression which is stored in the calculator's memory. The fact that the initial value of thememory cell is zero is also expressed by the above equation.The Meta-Lisp formulation of a valuation function associated with a syntax domainde�nes an interpreter for some construct of the language being de�ned. The formulationof a valuation function for a given abstract syntax domain, in Meta-Lisp, is based on theMeta-Lisp de�nition of its abstract syntax. Recall the de�nition in Meta-Lisp of theabstract syntax domain of Programs:P: ["ON" s] = (S s)Assuming that S will now be a mapping from the abstract syntax representation of Expres-sion Sequence and a Nat for the memory cell, to list of natural numbers, we can express inMeta-Lisp the �rst valuation rule as follows:P% Program -> (list Nat): ["ON" s] = (S s 0)It is easy to see that this de�nes the same meaning as the equation for P given before.The intended functionality of this evaluation rule is given as a comment.6.4.2 Expression SequenceThere are two rules that describe the meaning of Expression Sequences. The �rst describesthe meaning of a sequence of two or more expressions. The second one applies when thereis only one expression left to evaluate before the Calculator is turned o�. The functionalityof S indicates that the value of an Expression Sequence is calculated using the value of

126 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lispthe memory cell. The �rst equation states that the value of a sequence of two or moreexpressions can be given by constructing a list which has as its �rst element the meaning ofthe �rst expression, [[E]], and the rest of the list is obtained as the meaning of the remainingsequence of expressions. The corresponding actions of the calculator can be enumerated asfollows:1. Evaluate [[E]] using cell m, producing value m0.2. Print out m0 on the display.3. Place m0 into the memory cell.4. Evaluate the rest of the sequence [[S]] using the cell.Note how each of these four steps are represented in the semantic equation:1. is handled by the expression E[[E]](m).2. is handled by the expression m0 cons : : :.3. and 4. are handled by the expression S[[S]](m0).The equation for S[[E TOTAL S]] in Meta-Lisp can be given as follows:: [e "TOTAL" s] m = (@ m~ <- (E e m))[m~@S . (S s m~@S)]The correspondence between the two formulations is summarised below:[[E TOTAL S]](m) [e "TOTAL" s] mlet m0 = E[[E]](m) in (@ m~ <- (E e m))m0 cons S[[S]](m0) [m~@S . (S s m~@S)]The meaning of S[[E TOTAL OFF]] is similar. Since [[E]] is the last expression to beevaluated, the list of subsequent outputs is just nil. The de�nition of S, then, is as follows:S% Expr-Sequence -> Nat -> (list Nat): [e "TOTAL" "OFF"] m = [(E e m)]: [e "TOTAL" s] m = (@ n <- (E e m))[m~@S . (S s m~@S)]Note, that the ordering of the rules is important. Reversing it would mean that OFFwould be accepted as a Sequence, which is not correct. Alternatively, a new de�nition of scould be used:s: "OFF" = fail!: _

6.4. VALUATION FUNCTIONS 1276.4.3 ExpressionsThe equations for addition, E[[E1+E2]], and multiplication, E[[E1*E2]], are straightforward.Their transcription to Meta-Lisp poses no di�culties. All that is needed to be borne inmind is that plus and times are semantically primitive operations, which are importedfrom LISP:: [e1 "+" e2] m = (plus (E e1 m) (E e2 m)): [e1 "*" e2] m = (times (E e1 m) (E e2 m))The semantic equation for [[IF E1,E2,E3]] states that its meaning is given in terms ofthe conditional. The conditional is a primitive of Meta-Lisp, with analogous semantics tothe built in function if of LISP. The test for equality is imported from LISP. With theseoperations as semantic primitives the equation can be written in Meta-Lisp as:: ["IF" e1 "," e2 "," e3] m = (if (equals 0 (E e1 m))(E e2 m)(E e3 m))The remaining three equations describe very simple interpretations: [[LAST]] operatorcauses a lookup of the value in the memory cell; [[(E)]] speci�es that the value of an expressionin parentheses is the value of the enclosed expression; and �nally, the value of a Numeral isgiven by its valuation function. Collecting all these rules and the ones previously discussedtogether gives the following de�nition of E in Meta-Lisp:E% Expr -> Nat -> (list Nat): [e1 "+" e2] m = (plus (E e1 m) (E e2 m)): [e1 "*" e2] m = (times (E e1 m) (E e2 m)): ["IF" e1 "," e2 "," e3] m = (if (equals 0 (E e1 m))(E e2 m)(E e3 m)): ["LAST"] m = m: ["(" e ")"] m = (E e m): n m = (N n)6.4.4 NumeralsAll that remains is to discuss how numerals are mapped into natural numbers. Recall theoriginal equations:N: Numeral ! NatN[[N D]]=(N[[N]] times ten) plus D[[D]]N[[D]] = D[[D]]The �rst equation for N can be understood as saying that, if N is a numeral which denotesthe number, x = N[[N]], and D is a digit which denotes a number y = D[[D]],then N with

128 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lispthat digit D appended to the right of it denotes the number obtained by multiplying x byten and adding y to it. The second equation states simply that the meaning of a numeralcomprising a single digit is given in terms of the meaning of that digit.Transcribing these rules into Meta-Lisp is straightforward:N% Numeral -> Nat: [n d] = (plus (times 10 (N m)) (D d)): d = (D d)D% Digit -> Nat: any 0 1 2 3 4 5 6 7 8 9 = anyIt is instructive to determine the meaning of the keypad sequence 1 2 3 using theseevaluation rules:N[[1 2 3]] = (N[[1 2]] times ten) plus D[[3]]= (((N[[1]] times ten) plus D[[2]]) times ten) plus D[[3]]= (((D[[1]] times ten) plus D[[2]]) times ten) plus D[[3]]= (((one times ten) plus two) times ten) plus three= one hundred and twenty threeThe corresponding trace of the Meta-Lisp program is shown in Figure 6.15. In addition,Figure 6.16 shows a detailed trace of the interpretation of the the example session with thecalculator.6.5 DiscussionThis chapter has illustrated the methods that can be used for developing denotational styleinterpreters for a formal language using Meta-Lisp. To summarise, the main steps involvedare as follows:1. De�ne the Abstract Syntax of the language� Construct a reader and a lexical analyser for the language� Construct a Parser for the language which produces a list structure representationof the abstract syntax of the language� Construct a parser for the abstract syntax of the language

6.5. DISCUSSION 1290> N : (((1 2) 3))1> n : ((1 2) 3)<1 n : (1 2) = (1 2)1> d : (3)<1 d : 3 = 31> N : ((1 2))2> n : (1 2)<2 n : 1 = 12> d : (2)<2 d : 2 = 22> N : (1)3> d : (1)<3 d : 1 = 13> D : (1)<3 D : (1) = 1<2 N : (1) = 12> times : (10 1)<2 times : (10 1) = 102> D : (2)<2 D : (2) = 22> plus : (10 2)<2 plus : (10 2) = 12<1 N : ((1 2)) = 121> times : (10 12)<1 times : (10 12) = 1201> D : (3)<1 D : (3) = 31> plus : (120 3)<1 plus : (120 3) = 123<0 N : (((1 2) 3)) = 123Figure 6.15: Trace of Interpreting Numerals2. Construct or import concrete implementations of the semantic domains and algebrasto be used in the speci�cation of the mapping of syntactic constructs of the languageinto their denotations.3. Formulate the Evaluation Rules specifying the semantics of the language based on theparser for the abstract syntax of the language.4. Experiment with the interpreter thus obtained, both as the means of re�ning thespeci�cation and of developing a more thorough understanding of the workings of thelanguage thus de�ned.The experiment of writing denotational style interpreters in Meta-Lisp, described inthis chapter and the following chapter, has been instructive on several accounts. Althoughexperimenting with executable speci�cation cannot be a substitute for clear thought, it isapparent that a machine readable and executable language de�nition can greatly assist in`debugging' language speci�cations.

130 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lisp1> P : (("ON" ((("(" (4 "+" (1 2)) ")") "*" 2) "TOTAL"((1 "+" "LAST") "TOTAL" (("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF")))))2> S : (((("(" (4 "+" (1 2)) ")") "*" 2) "TOTAL" ((1 "+" "LAST") "TOTAL"(("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF"))) 0)3> E : ((("(" (4 "+" (1 2)) ")") "*" 2) 0)4> E : (("(" (4 "+" (1 2)) ")") 0)5> E : ((4 "+" (1 2)) 0)6> E : (4 0)7> N : (4)<7 N : (4) = 4<6 E : (4) = 46> E : ((1 2) 0)7> N : ((1 2))8> N : (1)<8 N : (1) = 1<7 N : ((1 2)) = 12<6 E : ((1 2)) = 12<5 E : ((4 "+" (1 2)) 0) = 16<4 E : (("(" (4 "+" (1 2)) ")") 0) = 164> E : (2 0)5> N : (2)<5 N : (2) = 2<4 E : (2) = 2<3 E : ((("(" (4 "+" (1 2)) ")") "*" 2) 0) = 32<3 S : (<- m~@S) = 323> S : (((1 "+" "LAST") "TOTAL" (("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF")) 32)4> E : ((1 "+" "LAST") 32)5> E : (1 32)6> N : (1)<6 N : (1) = 1<5 E : (1) = 15> E : ("LAST" 32)<5 E : ("LAST" 32) = 32<4 E : ((1 "+" "LAST") 32) = 33<4 S : (<- m~@S) = 334> S : ((("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF") 33)5> E : (("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) 33)6> E : (("LAST" "+" 1) 33)7> E : ("LAST" 33)<7 E : ("LAST" 33) = 337> E : (1 33)8> N : (1)<8 N : (1) = 1<7 E : (1) = 1<6 E : (("LAST" "+" 1) 33) = 346> E : ((2 "+" 4) 33)7> E : (2 33)8> N : (2)<8 N : (2) = 2<7 E : (2) = 27> E : (4 33)8> N : (4)<8 N : (4) = 4<7 E : (4) = 4<6 E : ((2 "+" 4) 33) = 6<5 E : (("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) 33) = 6<4 S : ((("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF") 33)= (6)<3 S : (((1 "+" "LAST") "TOTAL" (("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF")) 32)= (33 6)<2 S : (((("(" (4 "+" (1 2)) ")") "*" 2) "TOTAL"((1 "+" "LAST") "TOTAL" (("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF")))0)= (32 33 6)<1 P : (("ON"((("(" (4 "+" (1 2)) ")") "*" 2) "TOTAL"((1 "+" "LAST") "TOTAL" (("IF" ("LAST" "+" 1) "," 0 "," (2 "+" 4)) "TOTAL" "OFF")))))= (32 33 6) Figure 6.16: Trace of Interpreting Example Session

6.5. DISCUSSION 131However, animating the rules cannot, in itself, resolve questions relating to the func-tionality of the rules used in the speci�cation for the semantics. At best inconsistenciescan be indicated. Or, looking at it the other way, specifying the intended functionality ofan evaluation rule can help to get the formulation of the rule itself right. Ideally, thereshould be a machine provable link between the form that evaluation rules take and theirprescribed functionality. At the moment, however, information concerning the functionalityof the semantic mappings cannot be incorporated into theMeta-Lisp speci�cation. Clearlyto do so would require the development of some kind of type discipline or type inferencescheme for Meta-Lisp. The role of such type discipline, in the context of writing denota-tional interpreters will be analogous to the type checker of Wand's Semantic PrototypingSystem. [Wan84]. Developing a type discipline for Meta-Lisp is the subject of futureresearch. Making the task of writing denotational style interpreters less error-prone is oneof the main motivations for such research. Experience, so far, in writing denotational styleinterpreters in Meta-Lisp indicates not only that a type discipline would be bene�cial, butthat it may be possible to develop a decidable one, at least for the class of programs thatare structured to meet the requirements of developing denotational style interpreters.

132 CHAPTER 6. DENOTATIONAL SEMANTICS IN Meta-Lisp

Chapter 7Meta-circular De�nition ofMeta-LispAn interpreter or evaluator for a language is a procedure that, when applied to an expressionof the language, performs the actions required to evaluate that expression. An interpreterthat is written in the same language that it evaluates is said to bemeta-circular [ASS85][295].This chapter presents a denotational style interpreter forMeta-Lisp written inMeta-Lisp.The �rst section of the chapter discusses the appropriateness and adequacy of meta-circularde�nitions, in general, and the use ofMeta-Lisp as its own meta-language, in particular. Itis hoped that the previous chapters have enabled the reader to acquire a reading knowledgeof Meta-Lisp so that its meta-circular de�nition will be understandable. Moreover, thatthe study of this de�nition can, in fact, improve one's understanding of the language.The previous chapter have introduced the format of denotational language de�nitions.It has also illustrated the use of Meta-Lisp in developing denotational style interpreters.The main steps of providing such a language de�nition have been identi�ed as follows:1. Construct a reader and lexical analyser for the language2. Specify the Abstract Syntax of the language3. Specify the semantic domains and operations4. Using the de�nition of the abstract syntax of the language specify the evaluation rulesThe organisation of this Chapter reects the sequence of these steps. The speci�cationof the syntax of Meta-Lisp is the subject of Section 2. Its aim is to develop a machinereadable description of the abstract syntax of Meta-Lisp. Section 3 discusses the semanticdomains and operations that are used in the formulation of valuation rules. The semantics133

134 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-LispofMeta-Lisp is then formulated in Sections 4 and 5 in terms of valuation functions. Section4 deals largely with the underlying language de�nitional formalism of Meta-Lisp. Section5 presents the semantics of the applicative language of the semantic actions. The chapterconcludes with a discussion of the lessons learned from writing a meta-circular interpreterfor Meta-Lisp.7.1 Meta-Circular Language De�nitionsMcCarthy's de�nition of LISP in terms of the universal function, eval, formulated in LISP,was the �rst example of a meta-circular de�nition of a programming language. This sectionlooks at some of the arguments for, and against, the adequacy of meta-circular de�nitions.It also reects on the status of the meta-circular de�nition of Meta-Lisp presented in thischapter.7.1.1 For Meta-circular De�nitionsJohn Allen, in the Anatomy of LISP argues strongly in favour of the appropriateness of ameta-circular de�nition of the operational semantics 1 of programming languages. Firstly,he points out, that in de�ning the operational semantics of a programming language, \real-istically, the choice is where to stop, not whether to stop."[All78][163]. In the case of LISP,he argues that LISP and its data structures are su�ciently simple to render self-descriptionsatisfactory. There are, as Allen points out, compelling reasons for deciding on direct circu-larity. To understand a meta-circular de�nition one need only to understand one language,the speci�cation language being the same as the one that it speci�es. Understanding theworkings of a language then boils down to understanding a single program. Meta-circularde�nition of programming languages have the added advantage of reducing the task of initialimplementation of the language to the task of hand-coding the meta-circular interpreter.2Bootstrapping (see 183) can then be used to modify and extend the language by simplymodifying a single high level program.1or the pragmatics or procedural semantics of a programming language concerns itself with the process ofinterpretation of constructs of a language. It is usually contrasted with mathematical or declarative seman-tics which concerns itself with the relation between constructs of the language and the abstract mathematicalobjects which they denote2It is interesting to note that the original de�nition of LISP, in the form of a meta-circular interpreter,was put forward purely as the means of de�ning and illustrating the capabilities of the language as analternative to Turing machines in the context of the theory of computation. It was only later that S. R.Russell noticed that the meta-circular description of LISP can serve as an interpreter for it, which onlyneeded to be hand-coded to obtain a programming language with an interpreter. [Wex81][179]

7.1. META-CIRCULAR LANGUAGE DEFINITIONS 135In the The Structure and Interpretation of Computer Programs Abelson and Sussmanpoint out, that since evaluation is a process, and LISP is used as a tool for describing pro-cesses, it is appropriate to describe the evaluation process of LISP using LISP. [ASS85][295].In his book On understanding Z, Spivey presents the formal semantics of the Z notationwhich itself is written using Z as a meta-language. The spirit of Spivey's main argument, insupport of using Z as its own meta-language, is similar to the previous argument for the useof LISP to explicate the process of evaluation in LISP. As Z is put forward as a language towrite and reason about formal speci�cations, the purpose of giving a mathematical modelto help us to understand Z speci�cations and to reason about them, can be served wellby a semantics expressed in Z. Spivey also points out that for the design and speci�cationof software tools to assist in the process of writing and re�ning software tools for Z, it isappropriate that the formal de�nition of the speci�cation language is already written in anotation designed for expressing software speci�cations. In addition, writing the semanticde�nition in Z also provides a useful example of the exibility of Z as a framework fordeveloping mathematical theories. [Spi88][9-10]7.1.2 Against Meta-circularityThe most familiar objection against of meta-circular de�nitions is, that if one does not un-derstand the language being de�ned, then looking at a meta-circular de�nition of it will nothelp. It is indeed the case that, for a meta-circular de�nition to be meaningful, an indepen-dent understanding is required of at least one program written in the language purportedlyde�ned by it. The need for developing such an understanding is very similar to the needof developing an understanding of, say the language LAMBDA, that is de�ned and usedby Stoy in developing the theory and technique of \standard" denotational semantics. It istempting to suggest, that many of the di�culties that Stoy had discussed, with reference tometa-circular de�nitions, if taken literally, can be seen to befall any foundational enterprise.In other words, in de�ning the semantics of a language, we have to assume the knowledgeof at least one, su�ciently rich language.Stoy calls into doubt whether a meta-circular de�nition can be thought of as de�ninganything at all.[Sto77][181-182] He acknowledges that if one had a partial, independentunderstanding of a language, examination of a meta-circular de�nition of it can help toimprove this understanding. He then goes on to suggest that the semantics of the languagecan be thought of as a \�xed point" of the meta-circular interpreter, and warns that it maynot be unique. Moreover, he states that the \minimal �xed point of the interpreter will bethe language in which the value of every expression is unde�ned: so that the interpreter

136 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lispcannot really be thought of as de�ning anything at all" [Sto77][182].The objection against meta-circular de�nitions, that they can, or are very likely to beambiguous, if care is not taken, is well founded. For example. Henderson [Hen80][114]discusses two alternative formulations for the interpretation of the conditional (IF e1 e2e3). Only one of them will assign the property that only one arm of the conditional isevaluated, independently of whether the language, in which the meta-circular interpreteris written, has that property. Similar problems related to assumptions about parameterpassing mechanism, (whether it be call by value, or call by name) are discussed by Reynolds[Rey72]. Clearly, care must be taken to make explicit those assumptions about the de�ninglanguage that are carried over to the de�ned language. These assumptions include themeanings assigned to the primitive operations of the de�ning language. The fact that suchcare needs to be exercised, however, does not, in my view, invalidate the use of meta-circularde�nitions.Stoy's objections to meta-circular de�nitions stems from foundational concerns. For thepurpose of developing appropriate mathematical foundations, these concerns are crucial.The point of developing meta-circular de�nitions is not, however, to address foundationalissues, but to develop a model of the semantics of a language, which although it cannotbe said to be self-standing, (hardly any theory can ever be) can, nevertheless, enhance ourunderstanding of a language. This purpose is served very well in the case of LISP, or Z forthat matter. It is my hope that it will be judged to be the case for Meta-Lisp as well.7.1.3 Meta-Lisp as its own meta-languageMeta-Lisp is a meta-language to begin with. I.e., it is a language speci�cally designedfor the purpose of de�ning both the syntax and the semantics of formal languages. Fromthis point of view, it is incidental, that it was designed with a view to write programs aslanguage processors for their input data language.From the standpoint of semantic de�nitions, Meta-Lisp can be used to specify thesemantics of a language, in the form of a de�nitional interpreter, (as demonstrated in theprevious Chapter). It can also be used to specify the translational semantics of a language byspecifying a translation of it into another language, which, for the purpose of the de�nitionof the semantics, can be regarded as a semantically primitive language. Both forms ofdescribing the semantics of a language in Meta-Lisp can be carried out in the denotationalstyle. That is to say, in a form in which the meaning of composite phrases of the de�nedlanguage are given in terms of the meanings of its components.Formulating a denotational language speci�cation in Meta-Lisp, whether it be in the

7.1. META-CIRCULAR LANGUAGE DEFINITIONS 137form of a de�nitional interpreter, or a `de�nitional compiler' has many of the advantagesusually associated with standard denotational de�nitions. According to Stoy, formal se-mantic descriptions have, at least three, well identi�able kinds of bene�ts:The �rst is that such de�nitions can help to give su�ciently precise description forimplementors of the language to construct a correct compiler. This purpose have beenserved very well in the implementation ofMeta-Lisp, as the availability of the meta-circularde�nition helped to clarify many intricate issues of the semantics of the language. The meta-circular de�nition is not put forward, as a \pedagogic device", 3 but it is being proposedhere as the standard of implementation (i.e. how things should work). By developing apartial evaluator for Meta-Lisp it should be possible to derive a provably correct compilerfor Meta-Lisp from its denotational style de�nition. For further discussion of this issuesee the section on Future Work in the concluding Chapter.Another important bene�t of a formal de�nition of the semantics of a programminglanguage is that it can be used by programmers to make rigorous statements about thebehaviour of the programs they write. As things stand, at the present moment, reasoningabout Meta-Lisp programs, be they language de�nitions or `just' programs, can only beinformal. Informality, does not, however, exclude rigour. In fact the very structure ofMeta-Lisp program encourages the routine use of informal structural induction arguments.Much of the future work envisaged for the further development of the language addressesthe objectives of making such arguments more formal, as well as providing machine supportfor reasoning about Meta-Lisp programs. The planned development of a type inferencescheme for Meta-Lisp will be the basis for this.The third, and according to Stoy, probably the most important expected bene�t offormal semantic de�nitions is that they can guide language designers \towards the designof better (cleaner) programming languages, with simpler formal descriptions. And theadvantage of that will be that the programs which we concoct by the usual informal methodswill be more probably correct, because we will less likely have forgotten about the cruciallittle exception to some general rule that applies in our particular case". The extent towhich the design of Meta-Lisp has bene�ted from its, denotational style, meta-circularde�nition can even be said to have surpassed the bene�ts that could have been gained fromthe development of a \standard" denotational semantics for it.The problem with \standard" denotational de�nitions, as Gougen and Meseguer have3The reader is warned that the de�nitions of apply and eval given above are pedagogical devices andare not the same functions as those built into the LISP programming system. Appendix B contains thecomputer implemented version of these functions and should be used to decide questions about how thingsreally work. [MAE+65, 14]

138 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisppointed out, is that they \ commonly run to thousands of lines of hard-to-digest higherorder semantic equations, and are almost certainly wrong in detail, since they have neverbeen mechanically tested." [GM86, 300] The sheer complexity and the number of cases and\crucial little details" that need to be considered makes the need for mechanical testingparamount. This need could, of course have been served, not only by a meta-circularinterpreter, but by, say, developing a \denotational semantics interpreter" �rst, as it hasbeen done, for example, by Nicholson and Foo. [NF89, 665] They have developed andtested a denotational semantics for a core subset of Prolog, with small examples, using adenotational semantics interpreter, written in Prolog. Given the explicit meta-linguisticcapabilities of Meta-Lisp, however, there did not seem to be much point in writing aseparate denotational semantics interpreter. Instead, the same objective has been equallywell served by adhering to an appropriate style of writing language de�nitions in Meta-Lisp, as in the previous and the present chapter.

7.2. THE SYNTAX OF Meta-Lisp 1397.2 The Syntax of Meta-LispThe distinguishing feature of Meta-Lisp programs is that the set of valid input that theyare to accept is de�ned explicitly as a language. The output of a Meta-Lisp programis speci�ed as translation(s) of the input language of the program. These translations arespeci�ed by attaching semantic actions to each rule of the underlying grammar, that de�nesthe set of valid inputs to the program. The fundamental functional units of a Meta-Lispprogram are known as e�ective concepts or translation procedures. These correspond to thenon-terminals of the underlying grammar. The term e�ective concept is used to emphasisetheir role they play in explicating the conceptual structure of both the inputs to the programand the way corresponding output is to be computed.A Meta-Lisp program consists of a series of de�nitions for e�ective concepts. Thesede�nitions consist of the name of an e�ective concept and a series of rules, terminated byan empty line. The abstract syntax of Meta-Lisp is shown in Figures 7.1 and 7.2. Figure7.1 describes the abstract syntax of the grammatical means of composition of Meta-Lispprograms. Figure 7.2 describes the abstract syntax of the semantic actions. The followingmeta-syntactic conventions are being used:1. non-terminals are shown in italic2. the symbol ::= marks the beginning of grammar rules3. the symbol j marks an additional alternative4. keywords are represented in typewriter font5. lexical classes are enclosed in angle-brackets, e.g. h; iLexical classes are assumed to denote their corresponding lexical class in LISP.7.2.1 Lexical AnalysisLexical matters will largely be ignored in the present discussion. The lexical analyserperforms the usual task of translating a stream of characters into tokens of the language. Itinvolves identifying keywords and the words of the language. Its basic design is similar tothe lexical analyser for the Symbolic di�erentiation program. There is only one new featureof its design that needs special mention. This feature concerns the treatment of strings inthe input. Since keywords of the language are tokenised in the form of strings, there is aneed to be able to tell them apart from strings in the input.

140 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-LispProgram ::= Ec Rules Program (De�nitions)Ec ::= hidenti�eri (Concept Name)Rules ::= Alts (Alternatives)j Left (Left Recursion)Alts ::= : Synt = Sem Alts (Committed Alternative)j : Synt ? Sem Alts (Backtracking)j : Synt Alts (Default Action)Synt ::= Pseudo (Pseudo Rule)j Compos (Composition)Pseudo ::= is Pred (Predication)j any Objects (Enumeration)j with lisp Fn (LISP Primitive)j with Module Ec (Importing)Pred ::= hidenti�eri (LISP Predicate)Objects ::= hobjecti Objects (LISP Objects)Fn ::= hindenti�eri (LISP Function)Module ::= hkeywordi (LISP Keyword)Compos ::= Comp Compos (Composition)Comp ::= (Pre�x)j . (Su�x)j <> (Empty)j $ (End)j Denot (Denotation)j Ec (Constituent Ec)j [] (nil)j [Compos] (Nested Composition)Denot ::= 'hobjecti (LISP Object)j hstringi (String)j hkeywordi (Keyword)Left ::= Start Rec (Left Recursion)Start ::= Alts (Starting Alternatives)Rec ::= Alts (Iterated Alternatives)Figure 7.1: Abstract Syntax I

7.2. THE SYNTAX OF Meta-Lisp 141Sem ::= Sterms (Semantic Action)Sterms ::= Sterm Sterms (Semantic Terms)Sterm ::= f Sterms g (Sequencing)j (@ Id <- Sterm) (Synthesised Attribute)j (@ Id) (Synthesised Attribute)j (^ Id <- Sterm) (Inherited Attribute)j (^ Id) (Inherited Attribute)j (if Bool St1 St2) (If Then Else)j (Sterm Els) (Invocation)j [Els] (Construction)j < Ec > (Procedure Designation)j Denot (Denotation)j hnumberi (Number)j Id (Reference)j fail! (Failure)Id ::= hidenti�eri (Identi�er)Bool ::= Sterm (Test)St1 ::= Sterm (Consequent 1)St2 ::= Sterm (Consequent 2)Els ::= . Sterm Els (Splicing/Appending)j Sterm Els (Cons-ing)Figure 7.2: Abstract Syntax IIThe strategy adopted to distinguish tokens and strings is to represent string in the inputas lists formed of the keyword :string and the string that has been read.7.2.2 Mapping from Concrete to Abstract SyntaxThe program for mapping from concrete to abstract syntax takes the following input: thename of an e�ective concept, the representation of the rules, in terms of tokens, that makeup its de�nition, and a boolean value to determine whether a parse tree or the internalrepresentation of the abstract syntax is to be produced. Figure 7.3 shows the top-levelelaboration of the program.The mapping from concrete to abstract syntax is straightforward except for the treat-ment of left recursive rules. A rule for an e�ective concept X is said to be left recursive

142 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lispmci-c2a: ec tokens _ = (^ tree <- _) (Defn ec tokens)Defn: ec tokens = (^ ec) (Rules . tokens)Rules: Comments Left ? (if recs@Left(abst 'Left(abst 'Start (Alts . start@Left))(abst 'Rec (Alts . recs@Left)))fail!): Comments AltsComments: [:comment rest] Comments = t: <> Figure 7.3: Top Level Elaboration of Concrete to Abstract Mappingif its �rst component is X . left recursive rules are identi�er by the e�ective concept Left,shown in Figure 7.4.Left: rule1 rest = (if (eq ^ec comp1@rule1){ (Left . rest)(@ recs <- [":" . rest-of-rule@rule1 . recs@Left]) }{ (Left . rest)(@ start <- [. rule1 . start@Left]) }): $ = (@ recs <- []) (@ start <- [])rule1: ":" comp1 rest-of-rule = (@ comp1)(@ rest-of-rule)[":" comp1 . rest-of-rule]rest-of-rule: item rest-of-rule = [item . rest-of-rule]: <>item: $ = fail!: ":" = fail!: _ Figure 7.4: Concrete Syntax of Left Recursive RulesLeft examines each rule in turn and decides whether it is left recursive or not. It returnstwo values, in the form of synthesised attributes, which correspond to the left recursive andthe non-left recursive rules found. Rules that are classi�ed as non-left recursive are simplycombined to form the start-up rules of the de�nition. left recursive rules are returned asnew alternatives which are obtained by removing their �rst (left recursive) component. If itis found that the rules involve left recursion, then the start-up rules and the left recursive

7.2. THE SYNTAX OF Meta-Lisp 143rules are translated separately as alternatives by Alts. If there are no left recursive rules,then the input is translated simply as a sequence of alternatives. Note the use of semanticbacktracking (marked by the keyword ?) in the de�nition of Rules, to accomplish thisre-examination of the input in the absence of left recursion. Closer examination reveals,that Left will separate left recursive rules from non-left recursive ones, but it does not checkwhether they are consecutive or not. This should be improved upon in future version of theprogram. expr: term: expr + term = [+ expr term]((":" (term $) $)(":" (+ (term $)) "=" (("[" (+ (expr (term $))) "]") $) $)))LeftStartAlts
:

SyntCompsCompEc
term

Comps
$

Alts
$

RecAlts
:

SyntCompsCompEc
+

CompsCompEcterm
Comps
$ =

SemStermsSterm
[

ElsStermId+ ElsStermIdexpr ElsStermIdterm Els$] $
Alts
$Figure 7.5: Structure of a left recursive De�nition

144 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-LispFigure 7.5 shows a left recursive de�nition, the internal representation of its abstractsyntax, and its parse tree. Contrast it with Figure 7.6, that shows a right-recursive (i.e.non-left recursive) variant of expr.expr: term + expr = [+ term expr]: term(expr(":"(term (+ (expr $)))"="(("[" (+ (term (expr $))) "]") $)(":" (term $) $)))Alts
:

SyntCompsCompEc
term

CompsCompEc+
CompsCompEcexpr Comps$ =

SemStermsSterm
[

ElsStermId+ ElsStermIdterm ElsStermIdexpr Els$] $
Alts

:
SyntCompsCompEcterm

Comps
$

Alts
$Figure 7.6: Structure of a Right-recursive De�nitionThe program for mapping alternatives into their abstract syntax representation is shownin Figure 7.7. Figure 7.8 shows the same mapping for semantic actions. Note the use of $as the means of representing the end of a sequence.The remaining de�nition for mci-c2a are collected in Figure 7.9.

7.2. THE SYNTAX OF Meta-Lisp 145Alts: ":" Synt "=" Sem Alts = (abst 'Alts ":" Synt "=" Sem Alts): ":" Synt "?" Sem Alts = (abst 'Alts ":" Synt "?" Sem Alts): ":" Synt Alts = (abst 'Alts ":" Synt Alts): $ = (abst 'Alts $)Synt: Pseudo = (abst 'Synt Pseudo): Compos = (abst 'Synt Compos)Pseudo: "is" Pred = (abst 'Pseudo "is" Pred): "any" Objects = (abst 'Pseudo "any" Objects): "with" "lisp" Fn = (abst 'Pseudo "with" "lisp" Fn): "with" Module Ec = (abst 'Pseudo "with" Module Ec)Compos: Comp Compos = (abst 'Compos Comp Compos): <> = (abst 'Compos $)Comp: Denot = (abst 'Comp Denot): "_" = (abst 'Comp "_"): "._" = (abst 'Comp "._"): "<>" = (abst 'Comp "<>"): "$" = (abst 'Comp "$"): Ec = (abst 'Comp Ec): "[" Compos "]" = (abst 'Comp "[" Compos "]")Denot: "'" Object = (abst 'Denot "'" Object): String = (abst 'Denot String): keywordp = (abst 'Denot keywordp)String: [:string stringp] = (abst 'String [:string stringp])Pred: is identifier = (abst 'Pred is)Objects: objects = (abst 'Objects objects)Fn: is identifier = (abst 'Fn is)Module: is keywordp = (abst 'Module is)Ec: is identifier = (abst 'Ec is)Object: _ Figure 7.7: Concrete Syntax of Alternatives

146 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-LispSem: Sterms = (abst 'Sem Sterms)Sterms: Sterm Sterms = (abst 'Sterms Sterm Sterms): Sterm = (abst 'Sterms Sterm $)Sterm: "{" Sterms "}" = (abst 'Sterm "{" Sterms "}"): "(" "@" Id ")" = (abst 'Sterm "(" "@" Id ")"): "(" "@" Id "<-" Sterm ")" = (abst 'Sterm "(" "@" Id "<-" Sterm ")"): "(" "^" Id ")" = (abst 'Sterm "(" "^" Id ")"): "(" "^" Id "<-" Sterm ")" = (abst 'Sterm "(" "^" Id "<-" Sterm ")"): "(" "if" Bool St1 St2 ")" = (abst 'Sterm "(" "if" Bool St1 St2 ")"): "(" Sterm Els ")" = (abst 'Sterm "(" Sterm Els ")"): "[" Els "]" = (abst 'Sterm "[" Els "]"): "<" Ec ">" = (abst 'Sterm "<" Ec ">"): Denot = (abst 'Sterm Denot): Id = (abst 'Sterm Id): Number = (abst 'Sterm Number): Failure = (abst 'Sterm Failure)Id: is identifier = (abst 'Id is)Els: "." Sterm Els = (abst 'Els "." Sterm Els): "." Sterm = (abst 'Els "." Sterm): Sterm Els = (abst 'Els Sterm Els): Sterm = (abst 'Els Sterm): <> = (abst 'Els $)Number: is numberp = (abst 'Number is)Failure: "fail!" = (abst 'Failure "fail!")Bool: Sterm = (abst 'Bool Sterm)St1: Sterm = (abst 'St1 Sterm)St2: Sterm = (abst 'St1 Sterm)Figure 7.8: Concrete Syntax of Semantic Actions

7.2. THE SYNTAX OF Meta-Lisp 147objects: object objects = [object . objects]: <>object: any "=" "?" ":" = fail!: $ = fail!: _comp1 : _ec : is identifiereq : with lisp eqrest : ._tokens : _stringp : is stringpFigure 7.9: Miscellanous De�nition in mci-c2aThe de�nition of abst is the same as in Figure 6.87.2.3 The Abstract Syntax of Meta-LispFigures 7.10 and 7.11 show the de�nition of the abstract syntax of Meta-Lisp written inMeta-Lisp. As in the previous chapter, the de�nition of the abstract syntax in Meta-Lispspeci�es the list structure representation of the constructs of the language. The principleis the same, i.e. composite structures are represented as lists formed of their components.The de�nition can alternatively used to generate abstract parse trees.The following e�ective concepts all have de�nitions of the form X : _ , i.e. they areall de�ned as place-holders: alts, bool, c1, c2, comp, compos, els, fn, id, object,objects, pred, rec, sem, start, sterm, sterms, structure, synt, tree. Thefollowing e�ective concepts are de�ned using the pseudo rule of the form X : is X ,i.e. they import the following functions from LISP: identifier, keywordp, module,stringp.

148 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lispmci-abs: ec structure tree = (^ tree) (Defn ec structure)Defn: ec Rules = RulesRules: Left: AltsLeft: [start rec] = (abst 'Left (Start start) (Rec rec))Start: Alts = (abst 'Start Alts)Rec: Alts = (abst 'Rec Alts)Alts: [":" synt "=" sem alts] = (abst 'Alts ":" (Synt synt) "=" (Sem sem) (Alts alts)): [":" synt "?" sem alts] = (abst 'Alts ":" (Synt synt) "?" (Sem sem) (Alts alts)): [":" synt alts] = (abst 'Alts ":" (Synt synt) (Alts alts)): '$ = (abst 'Alts $)Synt: Pseudo = (abst 'Synt Pseudo): Compos = (abst 'Synt Compos)Pseudo: ["is" pred] = (abst 'Pseudo "is" pred): ["is!" pred] = (abst 'Pseudo "is!" pred): ["any" objects] = (abst 'Pseudo "any" objects): ["with" "lisp" fn] = (abst 'Pseudo "with" "lisp" fn): ["with" module ec] = (abst 'Pseudo "with" module ec)Compos: [comp compos] = (abst 'Compos (Comp comp) (Compos compos)): '$ = (abst 'Compos $)Comp: Denot = (abst 'Comp Denot): "_" = (abst 'Comp "_"): "._" = (abst 'Comp "._"): "<>" = (abst 'Comp "<>"): "$" = (abst 'Comp "$"): Ec = (abst 'Comp Ec): String = (abst 'Comp String): Keyword = (abst 'Comp Keyword): ["[" compos "]"] = (abst 'Comp "[" (Compos compos) "]")Denot: ["'" object] = (abst 'Denot "'" object): String = (abst 'Denot String): Keyword = (abst 'Denot Keyword)String: [:string stringp] = (abst 'String stringp)Keyword: is keyworp = (abst 'Keyword is)Ec: is identifier = (abst 'Ec is)Figure 7.10: Abstract Syntax I in Meta-Lisp

7.2. THE SYNTAX OF Meta-Lisp 149
Sem: sterms = (abst 'Sem (Sterms sterms))Sterms: [sterm sterms] = (abst 'Sterms (Sterm sterm) (Sterms sterms)): '$ = (abst 'Sterm $)Sterm: ["{" sterms "}"] = (abst 'Sterm "{" (Sterms sterms) "}"): ["(" "@" id ")"] = (abst 'Sterm "(" "@" id ")"): ["(" "@" id "<-" sterm ")"] = (abst 'Sterm "(" "@" id "<-" (Sterm sterm) ")"): ["(" "^" id ")"] = (abst 'Sterm "(" "^" id ")"): ["(" "^" id "<-" sterm ")"] = (abst 'Sterm "(" "^" id "<-" (Sterm sterm) ")"): ["(" "if" bool c1 c2 ")"] = (abst 'Sterm "(" "if" bool c1 c2 ")"): ["(" sterm els ")"] = (abst 'Sterm "(" (Sterm sterm) (Els els) ")"): ["[" els "]"] = (abst 'Sterm "[" (Els els) "]"): ["<" ec ">"] = (abst 'Sterm "<" ec ">"): Denot = (abst 'Sterm Denot): Id = (abst 'Sterm Id): Number = (abst 'Sterm Number): Failure = (abst 'Sterm Failure)Id: is identifier = (abst 'Id is)Number: is numberp = (abst 'Number is)Failure: "fail!" = (abst 'Failure "fail!")Els: ["." sterm els] = (abst 'Els "." (Sterm sterm) (Els els)): [sterm els] = (abst 'Els (Sterm sterm) (Els els)): '$ = (abst 'Els $)Figure 7.11: Abstract Syntax II in Meta-Lisp

150 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.3 Semantic Algebras7.3.1 Semantic DomainsThe following notions will be considered as elementary for the purposes of the presentexposition: hkeywordsi, hidenti�eri, hatomi and hfaili. These are all fundamental constructsof LISP and other programming languages.fail! = fail j succ(fail!) Hierarchy of failsval = hatomi j fail! j (list val) Denotable Valueinput = val Inputec = id Name of e�ective conceptid = hidenti�eri Identi�ermod = hkeywordi Module Nameenv = (list (list id value)) Environmentloc = env Local Bindingsglob = env Global Bindingsiat = env Bindings for Inherited Attributessat = env Bindings for Synthesised Attributesinit-env = (list (list)) Initial Environment7.3.2 Semantic FunctionsThe Meta-Lisp implementations of semantic functions for handling environments is shownin Figure 7.12

7.3. SEMANTIC ALGEBRAS 151
lookup% id -> iat -> loc -> sat -> val: id iat loc sat= (if (bound? key (merge-envs iat loc sat)) val@bound? id)merge-envs% list -> list: with lisp appenda-list% env: _bound?% id -> env -> (list id value) | (): boundh= (if boundh { (@ val <- (first (rest boundh))) t } [])boundh: identifier a-list= (assoc identifier a-list)assoc: with lisp assocadd-b% Add new Binding of ec to val to environment: key val env= [[key val] . env]add-bs: bindings env= (list2set [. bindings . env])Figure 7.12: Semantic functions

152 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.4 The Semantics of Meta-Lisp: Part IThe notion corresponding to program execution in Meta-Lisp is the invocation of an ef-fective concept with certain input. What is submitted to Meta-Lisp is the name of ane�ective concept followed by a sequence of objects forming the input. The invocation of ane�ective concept with certain input can be thought of as a query for determining whethersome pre�x of the given input is a sentence of the input language of the program. Theinvocation of an e�ective concept can succeed or it can fail. If the query has been successfulthen an `answer' to the query is produced. This takes the form of a value, or principaltranslation for the invocation, and bindings for the possible synthesised attributes of the ofthe e�ective concept invoked. The value of an invocation, and its possible attributes rep-resents translation(s) of the matched pre�x of the input. An example of a query presentedto the Meta-Lisp system is shown below:| ?= (split [a b c d e] alphalessp)The response is shown below:| (a b c d e)|------------| alphalesspp1@split = (a c e)p2@split = (b d)split = ((a b c) (b d))The example represents the invocation of the e�ective concept, split, with the input list((a b c d e) alphalessp). As can be seen from the de�nition of split shown in Figure7.13, split has two synthesised attributes p1@split and p2@split. The answer to the querysplit: [split.seq] = [(@ p1 <- p1@split.seq)(@ p2 <- p2@split.seq)]split.seq: $ = (@ p1 <- [])(@ p2 <- []): e1 $ = (@ p1 <- [e1])(@ p2 <- []): e1 e2 split.seq = (@ p1 <- [e1 . p1@split.seq])(@ p2 <- [e2 . p2@split.seq])e1 : _e2 : _ Figure 7.13: De�nition of split

7.4. THE SEMANTICS OF Meta-Lisp: PART I 153shows the bindings created for these attributes and lastly, it shows the output value. Italso shows, above the horizontal line, the matched portion of the input (a b c d e). Theunmatched portion of the input is shown under the horizontal line: alphalessp.E�ective concepts can be thought of as list structure matching procedures, that attemptto match some pre�x of the input while producing translation(s) of them. The process ofattempting to match some pre�x of the input while producing translation(s) of it is referredto as the expansion of an e�ective concept with certain input. This terminology is intendedto emphasise the continuity between the treatment of non-terminals of a grammar in TDPL,as in Section 2.2.2, as string matching procedures, and the concept of e�ective concepts inMeta-Lisp.E�ective concepts can also be viewed as pure functions. Let X be an e�ective concept.Its functionality can be given asX:input -> <suf, env, val>where suf is the unmatched portion of the input left behind after the expansion, env is aset of bindings for the synthesised attributes of the expanded concept, and val is its valueor principal translation of the input. The value of an e�ective concept is used as the meansof determining whether a given expansion was successful. The notation < : : : > is usedto represent tuples. In many cases, we are only interested in the synthesised attributes ifany, and the value of an e�ective concept. In these cases, it makes sense to talk about thefunctionality of a given concept in terms of the type of its synthesised attributes if any, andits value. As an example, consider the informal typing of split.seq. Its functionality can begiven informally as: split.sq: input -> <p1, p2, list>where p1 and p2 are also lists. The full functionality would be:split.sq: input -> <suf, <p1, p2>, list>When e�ective concepts are viewed as pure functions the informal typing is indicated.Whenever explicit type information for the set of valid input can be inferred from the formof a Meta-Lisp de�nition, the informal type of the input will also be indicated, as it hasbeen done throughout the previous Chapter.7.4.1 Top-Level Elaboration of the Meta-circular InterpreterThe meta-circular interpreter for Meta-Lisp, presented in this chapter, describes the ac-tions required to produce an answer to a Meta-Lisp query, i.e. the process of expansion

154 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lispof an e�ective concept with certain input. The interpreter has been successfully appliedto interpret itself interpreting another program (including itself) with some input. Self-application has been made possible by indicating in a call to the meta-circular interpreterthe number of levels of meta-interpretation involved. See Section 7.6.1 for details of why itwas necessary, and how does it work. In discussing the top-level elaboration of the meta-circular interpreter it is su�cient to take a note of the fact that information about thenumber of levels of meta-interpretation that are involved needs to be made available. Thisis accomplished in the form of the inherited attribute ^level.The input to the meta-circular interpreter comprises the following: the name of thee�ective concept being invoked, the name of the module to which it belongs, an integerargument which signi�es the level of meta-interpretation, and the input with which thenamed e�ective concept has been invoked. Figure 7.14 shows the top level elaboration ofthe interpreter.mci% ec -> mod -> level -> input -> <suf, env, val>: ec mod level input= (^ level)(Xec ec mod input (init-env))(@ suf <- suf@Xec)(@ env <- env@Xec)(@ val <- val@Xec)Xec% ec -> mod -> input -> glob -> <suf, env, val>: ec mod input glob= (^ ec)(^ mod)(Rules (get-def ec mod) input glob (init-env) (init-facs))(@ suf <- suf@Rules)(@ env <- env@Rules)(@ val <- val@Rules)Rules% rules -> input -> glob -> loc -> facs -> <suf, env, val>: Alts= (@ suf <- suf@Alts) (@ env <- env@Alts) (@ val <- val@Alts): Left= (@ suf <- suf@Left) (@ env <- env@Left) (@ val <- val@Left)Figure 7.14: Top Level Elaboration of the Meta-circular InterpreterThe workhorse of the interpreter is Xec which embodies the notion of the expansion ofan e�ective concept of a given module with some input, in a global environment, initiallyempty, that holds bindings for inherited attributes. Xec has three synthesised attributes:suf, env, and val. These convey information concerning the unmatched portion, or su�x,

7.4. THE SEMANTICS OF Meta-Lisp: PART I 155that the expansion of a concept left unmatched, an environment which holds the bindings forsynthesised attributes of the expanded concept, and the value of the expansion, respectively.The values associated with these attributes are assigned to the identically named attributesof mci. Considered as a function, mci has the following, informal functionality:ec -> mod -> level -> input -> <suf, env, val>The co-domain of mci is adequate in that it contains all the information necessary foranswering a Meta-Lisp query. Note that the codomain of Xec is the same. In fact, mostrules will have the same co-domain. Copying the values of synthesised attributes will alsobe a prominent feature of the de�nitions. 4The expansion of an e�ective concept belonging to a given module, with an input insome global environment is carried out as follows:1. The name of the given concept is made available as an inherited attribute: ^ec.2. Similarly the name of the module to which it belongs is recorded as ^mod.3. The rules making up the de�nition of the concept are retrieved.4. These are then interpreted as Rules.Meta-Lisp Rules can be either left recursive or are formed of alternatives without leftrecursive rules. The expansion of alternatives is the subject of the next subsection.7.4.2 AlternativesAlternatives inMeta-Lisp, as their name suggest, allow the description of alternative formsof input and their corresponding translation. The form that these alternatives can take canalso inuence the way further alternatives are considered. Figure 7.15 shows the de�nitionof alternatives.The interpretation of alternatives makes reference to a second environment, called locwhich is used to hold the bindings created in the course of interpreting individual rules.It also involves the maintenance of records of expansions that have been completed at anypoint. These records are used as a mechanism of left-factoring (see Section 2.2.1). Note thatleft-factoring is achieved not by changing the grammar, but by changing the way grammarrules are expanded. As such, this `optimisation' forms an integral part of the semantics ofMeta-Lisp.4It is arguable, whether there should be rules to govern the copying of attribute values implicitly, in placeof the present requirement of making them explicit

156 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-LispAlts% alts -> input -> glob -> loc -> facs -> <suf, env, val>: [":" synt "=" sem alts] input glob loc facs= (if (success? (Synt synt input glob loc facs) ^level){ (Sem sem glob env@Synt val@Synt (init-env))(@ suf <- suf@Synt)(@ env <- sat@Sem)(@ val <- val@Sem) }{ (Alts alts input glob loc facs@Synt)(@ suf <- suf@Alts)(@ env <- env@Alts)(@ val <- val@Alts) }): [":" synt "?" sem alts] input glob loc facs= (if (success? (Synt synt input glob loc facs) ^level){ (Sem sem glob env@Synt val@Synt (init-env))(if (success? val@Sem ^level){ (@ suf <- suf@Synt) (@ env <- env@Sem) (@ val <- val@Sem) }{ (Alts alts input glob loc facs@Synt)(@ suf <- suf@Alts)(@ env <- env@Alts)(@ val <- val@Alts) }) }{ (Alts alts input glob loc facs@Synt)(@ suf <- suf@Alts)(@ env <- env@Alts)(@ val <- val@Alts) }): [":" synt alts] input glob loc facs= (if (success? (Synt synt input glob loc facs) ^level){ (@ suf <- suf@Synt) (@ env <- (init-env)) (@ val <- val@Synt) }{ (Alts alts input glob loc facs@Synt)(@ suf <- suf@Alts)(@ env <- env@Alts)(@ val <- val@Alts) }): '$ input glob loc facs= (@ suf <- input) (@ env <- (init-env)) (@ val <- (mk-fail+ ^level))Figure 7.15: Alternatives7.4.2.1 Alternatives with Default Action[":" synt alts]The simplest form of alternatives is one which consists of a syntax speci�cation and furtheralternatives. Its interpretation is as follows:1. Expand the syntax speci�cation with the given input.2. If this was successful then return the unmatched portion of the input, the bindings and thevalue produced by the expansion of the syntax description.3. If this failed, then the remaining alternatives are tried.Note that the factors produced, in the course of the (ultimately unsuccessful) expansionof the syntax description, are passed on to enable left-factoring to be carried out in the

7.4. THE SEMANTICS OF Meta-Lisp: PART I 157course of the expansion of the remaining alternatives.Note also, that deciding whether a given value represents success (i.e. not failure)requires the number of levels of meta-interpretation to be known. This is because therepresentation of failure itself depends on the level of meta-interpretation.7.4.2.2 Backtracking Alternatives[":" synt "?" sem alts]1. The syntax description part of an alternative imposes conditions on the input. If these con-ditions are not satis�ed by the input, the expansion of an alternative fails, which results inbacktracking and an attempt to reexamine the input using the remaining alternatives.2. If the expansion of the syntax description in a rule has been successful then the associatedsemantic action is evaluated.3. If the semantic action evaluates to failure then the remaining alternatives are tried as if thesyntax description had failed.4. If the semantic action evaluates to any other value then the items returned are� the unmatched portion of the input produced by the expansion of the syntax speci�cation� the bindings for synthesised attributes produced by the evaluation of the semantic action� and the value produced by the evaluation of the semantic action7.4.2.3 Committed Alternatives[":" synt "=" sem alts]The di�erence between the treatment of Backtracking Alternatives and Committed Alter-natives 5 is that step 3 is omitted and step 4 is carried out regardless of the value of thesemantic action. That is to say, even if the value of the semantic action happens to denotefailure, this value will be returned, and no further alternatives are tried for the currentlyexpanded concept. Backtracking, will however be caused by this at the level of the callerof the currently expanded concept.7.4.2.4 Exhausting AlternativesIf all alternatives have been tried and all failed, then failure is returned. This amounts toreturning the input as the su�x, an empty environment as bindings for attributes, and theright level representation of failure.This concludes the present discussion of the expansion of alternatives.5The idea of `commitment' in the consideration of alternatives was �rst suggested by Mark Tarver.

158 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.4.3 Syntax RulesThere are two kinds of syntax rules inMeta-Lisp. The �rst comprises a non empty sequenceof syntax components, forming a composition. In its form the second kind of syntax rulelooks like a composition, except that its �rst element is one of the keywords is, any orwith. The presence of these keywords signify that these rules are not to be treated as acomposition, instead they have some special interpretation. Syntax rules of this kind areknown as pseudo rules. Figure 7.16 shows clearly the above classi�cation of syntax rules.Synt% synt -> input -> glob -> loc -> facs -> <suf, env, facs, val>: Pseudo= (@ suf <- suf@Pseudo)(@ env <- env@Pseudo)(@ facs <- facs@Pseudo)(@ val <- val@Pseudo): Compos= (@ suf <- suf@Compos)(@ env <- env@Compos)(@ facs <- facs@Compos)(@ val <- val@Compos) Figure 7.16: Syntax Rules7.4.4 Pseudo RulesThe rationale for pseudo rules is that they extend the range of structural constraints thatcan be imposed on the input by ordinary syntax rules. Speci�cally, they can be used to� designate LISP predicates to be used as the means of specifying particular propertiesof the input,� specify as an admissible �rst element of the input any one of a collection of objects,� specify LISP functions to operate on the input instead of e�ective concepts,� import e�ective concepts from other modules.The interpretation of these rules is given in Figure 7.17.7.4.4.1 Predication ["is" pred]

7.4. THE SEMANTICS OF Meta-Lisp: PART I 159Pseudo: ["is" pred] input glob loc facs= (if (apply pred [(first input)]){ (@ suf <- (rest input))(@ env <- (add-b "is" (first input) (init-env)))(@ facs)(@ val <- (first input)) }{ (@ suf <- input)(@ env <- (init-env))(@ facs)(@ val <- (mk-fail+ ^level)) }): ["any" objects] input glob loc facs= (if (member (first input) objects){ (@ suf <- (rest input))(@ env <- (add-b "any" (first input) (init-env)))(@ facs)(@ val <- (first input)) }{ (@ suf <- input)(@ env <- (init-env))(@ facs)(@ val <- (mk-fail+ ^level)) }): ["with" "lisp" fn] input glob loc facs= (@ suf <- [])(@ env <- (init-env))(@ facs)(@ val <- (apply fn input)): ["with" module ec] input glob loc facs= (Xec ec module input glob)(@ suf <- suf@Xec)(@ env <- env@Xec)(@ facs)(@ val <- val@Xec) Figure 7.17: Pseudo RulesPredication allows the use of a named LISP predicate 6 to determine whether the �rstelement of the input is to be deemed grammatical. The interpretation of this rules is asfollows:1. Apply (in the sense of LISP) the named LISP predicate to the �rst element of the input.2. If the result of the application is a non-nil value then, return� the input list without its �rst element, as su�x� a new environment in which the keyword is is bound to the �rst element of the input� the factors unchanged� the �rst element of the input as the value of the expansion3. otherwise report failure, by returning� the entire input, as su�x� the empty environment6a LISP predicate is a function which may return nil as its value

160 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp� the original factors unchanged� failure as the value of the expansion7.4.4.2 Enumeration ["any" objects]Enumeration provides the means of specifying any one of a number of given objects asadmissible �rst element of the input.1. Test if the �rst element of the input is included in the list of objects given in the rule2. If the �rst element is one of these objects then return� the input list without its �rst element, as su�x� a new environment in which the keyword any is bound to the �rst element of the input� the factors unchanged� the �rst element of the input as the value of the expansion3. otherwise report failure, by returning� the entire input� the empty environment� the original factors unchanged� failure as the value of the expansion7.4.4.3 LISP Primitives ["with" "lisp" fn]This pseudo rule is special in that it does not impose any conditions on the input. It opensa back door to allow LISP functions to be incorporated into Meta-Lisp programs.1. Apply the LISP function named in the rule to the entire input, and return� the empty su�x (i.e. pretend that the entire input has been matched)� a new environment in which the keyword with is bound to the �rst element of the input� the factors unchanged� the result of the application of the named function to the input as the value of theexpansion

7.4. THE SEMANTICS OF Meta-Lisp: PART I 1617.4.4.4 ImportingThe name-space of Meta-Lisp is partitioned into modules. Every e�ective concept at thepoint of de�nition is made to belong to some module. The last pseudo rule provides themeans of importing the functionality of a named concept from an other module.["with" module ec]1. Expand the e�ective concept named in the rule from the given module on the input, andreturn� the su�x of the expansion� the bindings created by the expansion� the factors unchanged� the result of the expansion7.4.5 CompositionThe structure of the input is speci�ed in terms of a non-empty sequence of syntax com-ponents forming a composition. The process of expansion of a composition provides themeans of establishing whether some pre�x of the input is grammatical. The expansion ofa composition in Meta-Lisp plays the role of a syntax-directed parameter passing mecha-nism. Figure 7.18 shows that this process is recursive. It also shows that the terminatingcase is reached when the the last component is to be expanded next.Compos% compos -> input -> glob -> loc -> facs -> <suf, env, facs, val>: [comp '$] input glob loc facs= (if (success? (Comp comp input glob facs) ^level){ (@ suf <- suf@Comp)(@ env <- (add-bs env@Comp loc))(@ facs <- facs@Comp)(@ val <- val@Comp) }{ (@ facs <- facs@Comp) (@ val <- (mk-fail+ ^level)) }): [comp compos] input glob loc facs= (if (success? (Comp comp input glob facs) ^level){ (Compos compos suf@Comp glob (add-bs env@Comp loc) facs@Comp)(@ suf <- suf@Compos)(@ env <- env@Compos)(@ facs <- facs@Compos)(@ val <- val@Compos) }{ (@ facs <- facs@Comp) (@ val <- (mk-fail+ ^level)) })Figure 7.18: Composition

162 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.4.5.1 Composition: General Case[comp compos]The expansion of a composition comprising more then one syntax components proceeds asfollows:1. The �rst component in the composition is expanded2. If this was successful, then� Expand the remaining components in the composition with{ the su�x of the successful expansion of the �rst component as the input.{ the global bindings unchanged{ local environment extended to include the bindings created in the course of thesuccessful expansion of the �rst component{ new, possibly extended set of factors produced in the course of the expansion of the�rst component� then return the su�x, the extended local environment, the factors and the value of theexpansion of the remaining components3. If the expansion of the �rst component was not successful, then return� the factors returned by the unsuccessful expansion of the �rst component (this willinclude a record of this failure)� failure as the value of the expansion of the composition7.4.5.2 Composition: Terminating Case[comp '$]The expansion of a composition comprising a single syntax component proceeds as follows:1. Expand the given component with the given input2. If this was successful, then return the su�x, the extended local environment, the factors andthe value of the expansion of the component as su�x etc. of the composition3. if the expansion of the single component was not successful, then return� the factors returned by the unsuccessful expansion of the component� failure as the value of the expansion of the composition

7.4. THE SEMANTICS OF Meta-Lisp: PART I 1637.4.6 Syntax ComponentComponents can be characterised as one of two kinds: elementary and non-elementarycomponents. Elementary components are so called because their action on the input canbe de�ned without reference to other e�ective concepts. Non-elementary components, incontrast depend for their de�nition on other e�ective concepts. Figure 7.19 shows the def-inition of components. Elementary components o�er grammatical means which go beyondthe matching of terminal symbols. They o�er extra language de�nitional capabilities whichhave been found invaluable in language oriented programming. The inclusion of nestedstructures into the grammatical formalism has been motivated also by their usefulness andconvenience in writing language oriented programs.7.4.6.1 Pre�x " "The limiting case of syntax-directed parameter passing is pattern matching. This featureprovides the mechanism for unconditional acceptance of the �rst element of the input. Ine�ect, its role can be likened to that of pattern variables. Note that if the input is emptythen the empty list is returned.1. Always succeeds, and returns� the rest of the input as su�x� a new environment in which the keyword "_" is bound to the �rst element of the input� the factors unchanged� the �rst element of the input as the value of the expansion7.4.6.2 Su�x ". "This form of syntax component provides the means of passing the entire input as a param-eter.1. Always succeeds, and returns� the empty input as su�x� a new environment in which the keyword "._" is bound to the entire input� the factors unchanged� the entire input as the value of the expansion

164 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.4.6.3 Empty "<>"This feature of the grammatical formalism of Meta-Lisp corresponds to the empty pro-duction of standard grammatical formalism.1. Always succeeds, and returns� the entire input as su�x� an empty, new environment� the factors unchanged� the empty list as its value7.4.6.4 End of Input Test "$"This feature of the grammatical formalism ofMeta-Lisp corresponds to the use of endmarkin parsing.1. Tests if the input is empty2. If it is, then returns� the empty input as su�x� a new, empty environment� the factors unchanged� the empty list as its value

7.4. THE SEMANTICS OF Meta-Lisp: PART I 165Comp% comp -> input -> glob -> facs -> <suf, env, facs, val>: "_" input glob facs= (@ suf <- (if input (rest input) [])(@ env <- (add-b "_" (if input (first input) []) (init-env)))(@ facs)(@ val <- (first input)): "._" input glob facs= (@ suf <- [])(@ env <- (add-b "._" input (init-env)))(@ facs)(@ val <- input): "<>" input glob facs= (@ suf <- input) (@ env <- (init-store)) (@ facs) (@ val <- []): "$" input glob facs= (if (null? input){ (@ suf <- []) (@ env <- (init-env)) (@ facs) (@ val <- []) }{ (@ suf <- []) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ ^level)) }): Denot input glob facs= (if (equal Denot (first input)){ (@ suf <- (rest input)) (@ env <- (init-env)) (@ facs) (@ val <- (first input)) }{ (@ suf <- input) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ ^level)) }): Ec input glob facs= (if (present? (get-factor Ec facs) input){ (@ suf <- suf@present?)(@ env <- (add-b Ec val@present? env@present?))(@ facs)(@ val <- val@present?) }{ (Xec Ec ^mod input glob)(@ suf <- suf@Xec)(@ env <- (add-b Ec val@Xec env@Xec))(@ facs <- (add-factor (mk-factor Ec suf@Xec env@Xec val@Xec (first input)) facs))(@ val <- val@Xec) }): ["[" '$ "]"] input glob facs= (if (null? (first input)){ (@ suf <- (rest input)) (@ env <- (init-env)) (@ facs) (@ val <- (first input)) }{ (@ suf <- input) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ ^level)) }): ["[" compos "]"] input glob facs= (if (atom? (first input)){ (@ suf <- input) (@ env <- (init-env)) (@ facs) (@ val <- (mk-fail+ ^level)) }(if (success? (Compos compos (first input) glob (init-env) facs) ^level)(if (null? suf@Compos){ (@ suf <- (rest input))(@ env <- env@Compos)(@ facs <- facs@Compos)(@ val <- val@Compos) }{ (@ suf <- input)(@ env <- (init-env))(@ facs <- facs@Compos)(@ val <- (mk-fail+ ^level)) }){ (@ suf <- [])(@ env <- (init-env))(@ facs <- facs@Compos)(@ val <- (mk-fail+ ^level)) }))Figure 7.19: Syntax Component

166 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.4.6.5 DenotationThe concept of terminal productions is made more machine oriented in Meta-Lisp by theintroduction of the notion of denotation which covers not only the matching of arbitraryobjects, but strings and keywords as denoting themselves. The forms that denotations cantake is de�ned in Figure 7.20. The interpretation of denotations is the same regardless oftheir speci�c form:Denot: ["'" object]= object: String: KeywordString: [:string stringp]= stringpKeyword: is keywordpEc: identifier Figure 7.20: Denotation1. Test if the �rst element of the input is the same as the given denotation.2. If it is the case, then return� the input list without its �rst element, as su�x� a new, empty environment� the factors unchanged� the �rst element of the input as the value of the expansion3. If the �rst element of the input is not the same as the given denotation, then return� the entire input, as su�x� the empty environment� the original factors unchanged� failure as the value of the expansion7.4.6.6 Constituent E�ective ConceptEcThe real de�nitional power of composition derives from the fact that it can have e�ectiveconcepts as components. The invocation of constituent e�ective concepts in a composition

7.4. THE SEMANTICS OF Meta-Lisp: PART I 167in a rule for a given e�ective concept clearly involves a recursive call to the workhouse ofthe meta-circular interpreter Xec. It is at this point that a record of the expansion of aconcept is created and used. The expansion of a constituent concept proceeds as follows:1. Test if the given concept has been expanded earlier with the same input.2. If it is the case then return� the recorded su�x� extend the bindings for synthesised attributes retrieved from the record of the previousexpansion of the concept with a binding for the name of the concept to its recorded value� the factors unchanged� the value of the recorded expansion3. If there is no record of a previous expansion of the given concept with the same input as thecurrent input, then� expand the concept with the current input, and� return the su�x of the expansion� extend the bindings for synthesised attributes produced by the expansion with a bindingfor the given concept to the value of the expansion� add to the record of previous expansions a new record comprising all the necessaryinformation about the expansion of the concept. The information recorded include, thesu�x, the bindings, the value returned by the expansion. In addition to these the �rstelement of the input is also recorded.� �nally, the value of the recorded expansion is returnedThe maintenance of appropriate records of previous expansions is a form ofmemoisation.Recoring information about the input is equivalent to recording the arguments to a functionwhen it is memoised. It is an open question whether it is su�cient to record only the �rstelement of the input for this purpose. It may be that more is needed. Or even, perhaps thatthe entire input needs to be examined. The latter, in some circumstances, may introduceintolerable overheads. This requires further investigation.7.4.6.7 Nested Composition ["[" compos "]"]Meta-Lisp allows the grammatical description of arbitrary nested list structures.1. If the �rst element of the input is not a list, then report failure in the usual manner2. If the �rst element of the input was indeed a list, then� expand the composition enclosed in square brackets with the �rst element of the inputas input� if the expansion of the composition was successful,then

168 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp{ if the expansion exhausted its input, then� return as the su�x of the expansion of the nested composition the originalinput less its �rst element, since, as the test shows, the �rst element has beenmatched completely.� return the bindings, the factors and the value produced by the expansion of thenested composition in the usual manner{ if the expansion did not exhaust its input, then return� the entire original input as su�x� the empty environment� the factors returned by the expansion of the composition� failure as the value of the expansion of nested composition� if the expansion of the composition failed, then report failure, but pass on the factorsproduced by the expansion as well7.4.7 Left RecursionThe form of left recursion provided in Meta-Lisp is limited to direct left recursion. Itis useful both as the means of specifying iteration as well as the de�nition of languageconstructs that involve left associativity. Figure 7.21 shows the meta-circular de�nition ofthis construct.Left: [start rec] input glob loc facs= (Start start input glob loc facs)(if (success? value@Start ^level){ (Rec rec suf@Start glob (add-b ^ec val@Start env@Start) val@Start)(@ suf <- suf@Rec)(@ env <- env@Rec)(@ val <- val@Rec) }{ (@ suf <- input) (@ env <- loc) (@ val <- (mk-fail+ ^level)) })Start: Alts= (@ suf <- suf@Alts) (@ env <- env@Alts) (@ val <- val@Alts)Rec: alts input glob loc val= (Alts alts input glob loc (init-facs))(if (success? val@Alts ^level){ (Rec alts suf@Alts glob (add-b ^ec val@Alts env@Alts) val@Alts)(@ suf <- suf@Rec)(@ env <- env@Rec)(@ val <- val@Rec) }{ (@ suf <- input) (@ env <- loc) (@ val) })Figure 7.21: Left RecursionThe abstract syntax of left recursive rules was designed to facilitate their interpretation.The distinction drawn between left recursive and non-left recursive rules is crucial. Recall

7.4. THE SEMANTICS OF Meta-Lisp: PART I 169that the abstract syntax representation of left recursive alternatives omits the left recursivecalls from the rules (see Section 7.2.2). The non-left recursive alternatives, are used toproduce a start-up value for the left recursive e�ective concept. For this reason they arereferred to as start-up rules. The suitably transformed left recursive alternatives are thenexpanded repeatedly in an environment in which there are bindings for the left recursiveconcept, { initially using the values produced by the expansion of the startup rules { to thevalue of the previous iteration.1. The start-up rules are expanded as alternatives2. If this expansion was successful, then� the recursive alternatives are expanded{ with input that was left unmatched by the expansion of the startup rules{ in a local environment that consists of the bindings produced by the expansion ofthe start-up rules, extended to include the value of the start-up rules bound to thename of left recursive concept being expanded{ the value of the expansion of the start-up rules is also passed as a parameter� the su�x, the environment and the value produced by the expansion of recursive alter-natives are then returned3. if the expansion of the start-up rules failed, then report failure7.4.7.1 Left Recursive Alternatives1. The alternatives are expanded2. If the expansion was successful then the expansion of left recursive alternatives is repeatedwith� input left unmatched by the expansion of the alternatives� in a local environment in which name of the left recursive concept being expanded isbound to the value of the alternatives� the value of the of the expansion of the alternatives3. if the expansion of the alternatives fails, then return� the input as the unmatched pre�x� the local environment, which holds the bindings created in the previous successful ex-pansion of the left recursive alternatives� and the value of the previous expansion

170 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.5 The Semantics of Meta-Lisp: Part IIThis Section presents the semantics of the language of Semantic Actions. An importantproperty of the language of semantic actions is that the value of an expression of the languageis determined solely in terms of its constituent parts. That is to say, it is an applicativelanguage [Hen80, 7].7.5.1 Semantic ActionsFigure 7.22 show the top-level elaboration of the interpreter for semantic actions. It mapssemantic actions into three values: bindings for inherited attributes and synthesised at-tributes and the value of the evaluation of the semantic action. The valuation of semanticactions takes place in the context of environments that contain bindings created in thecourse of the expansion of the grammar rule with which the semantic action is associated,inherited and synthesised attributes. The latter two can also be added to in the course ofthe evaluation. Semantic actions comprise a non-empty sequence of semantic terms. Themeaning of semantic actions is therefore given in terms of the meaning of these terms.Sem% sem -> iat -> loc -> val -> sat -> <iat, sat, val>: sterms iat loc val sat= (Sterms sterms iat loc val sat)(@ iat <- iat@Sterms)(@ sat <- sat@Sterms)(@ val <- val@Sterms) Figure 7.22: Semantic Action7.5.2 Semantic TermsSemantic terms are evaluated in a sequence. The bindings created by the evaluation of onesemantic term can be referenced in the course of the evaluation of subsequent terms.7.5.3 Semantic Terms: General Case[sterm sterms]1. Evaluate the given semantic term2. Evaluate the remining semantic terms in the context of new environments returned by theevaluation of the semantic term3. Return the environments and the value resulting from the evaluation of semantic terms.

7.5. THE SEMANTICS OF Meta-Lisp: PART II 171Sterms% sterms -> iat -> loc -> val -> sat -> <iat, loc, sat, val>: '$ iat loc val sat= (@ iat) (@ loc) (@ sat) (@ val): [sterm sterms] iat loc val sat= (Sterm sterm iat loc val sat)(Sterms sterms iat@Sterm loc@Sterm val@Sterm sat@Sterm)(@ iat <- iat@Sterms)(@ loc <- loc@Sterms)(@ sat <- sat@Sterms)(@ val <- val@Sterms) Figure 7.23: Semantic Terms7.5.4 Semantic Terms: Terminating Case'$If there are no more semantic terms in the sequence then return the current values of the1. environments for� inherited attributes� local bindings� synthesised attributes2. end the value of the last semantic term7.5.5 Semantic TermThere are four basic mechanisms used to build up semantic terms. These are1. sequencing2. attribute assignments3. invocation of semantic functions (e�ective concepts or the choice function if)4. construction of list structuresFigure 7.24 shows the appropriate evaluation rules. These will be considered, one byone in the following subsections.7.5.5.1 Sequencing ["{" sterms "}"]A non-empty sequence of semantic terms enclosed in a pair of curly brackets is a semanticterm. It is evaluated as a semantic action.

172 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp7.5.5.2 Synthesised Attributes["(" "@" id "<-" sterm ")"]Synthesised attributes can be assigned the value of a semantic term.1. The semantic term given in the attribute assignment is evaluated2. Bindings returned by the evaluation of the semantic term are returned unchanged with theexception of bindings for synthesised attributes3. a new binding is added to the set of bindings for synthesised attributes which binds the valueof the semantic term to an identi�er constructed out of the given attribute name and thename of the e�ective concept being expanded7.5.5.3 Default Synthesised Attributes["(" "@" id ")"]The above form of synthesised attribute assignment is a shorthand for the equivalent se-mantic term ["(" "@" id <- id ")"]which can then be interpreted as a synthesised attribution.7.5.5.4 Inherited Attributes["(" "^" id "<-" sterm ")"]Inherited attributes can be assigned the value of a semantic term.1. The semantic term given in the attribute assignment is evaluated2. Bindings returned by the evaluation of the semantic term are returned unchanged with theexception of bindings for inherited attributes3. a new binding is added to the set of bindings for inherited attributes which binds the valueof the semantic term to an identi�er constructed out of the a caret ^ and the given attributename.The real di�erence between synthesised and inherited attributes is that the latter arepassed on as global bindings for in subsequent invocations of e�ective concepts, whereassynthesised attributes represent information ow in the opposite direction.

7.5. THE SEMANTICS OF Meta-Lisp: PART II 1737.5.5.5 Default Inherited Attributes["(" "^" id ")"]The above form of synthesised attribute assignment is a shorthand for the equivalent se-mantic term ["(" "^" id <- id ")"]which can then be interpreted as an inherited attribution.7.5.5.6 Choice function ["(" "if" bool c1 c2 ")"]The semantics of the choice function is the standard one. That is to say only one arm ofthe conditional will be evaluated. Care has been taken to write the evaluation rule in such away that it is independent of whetherMeta-Lisp has this property or not. What it assumes,however, is e left-to-right evaluation order. The trick used is to have two conditionals doingthe job of one.1. The boolean term is evaluated �rst2. If it evaluates to a non-nil value then the �rst arm of the conditional is evaluated.3. If it evaluates to nil then the �rst arm is not evaluated, only the second4. the bindings and the value created in the course of the evaluation of one of the appropriatebranch of the conditional is returned.Note that the bindings created by the evaluation of the boolean term are passed to theevaluation of the branches of the choice function.7.5.5.7 Invocation ["(" sterm els ")"]The ability of invoking e�ective concepts in the semantic actions is the most importantfeature of Meta-Lisp. This feature is responsible for Meta-Lisp's ability to provide lin-guistic support for the language oriented paradigm. The way it is being de�ned relies onthe left-to-right evaluation order of Meta-Lisp. It seems hard to avoid this. It should beregarded as one of the fundamental, irreducible properties of the language.

174 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-LispSterm: ["{" sterms "}"] iat loc val sat= (Sterms sterms iat loc val sat)(@ iat <- iat@Sterms)(@ loc <- loc@Sterms)(@ sat <- sat@Sterms)(@ val <- val@Sterms): ["(" "@" id "<-" sterm ")"] iat loc val sat= (Sterm sterm iat loc val sat)(@ iat <- iat@Sterm)(@ loc <- loc@Sterm)(@ sat <- (add-b (mk-sattr-name id ^ec) val@Sterm sat@Sterm))(@ val <- val@Sterm): ["(" "@" id ")"] iat loc val sat= (Sterm ["(" "@" id "<-" id ")"] iat loc val sat)(@ iat <- iat@Sterm)(@ loc <- loc@Sterm)(@ sat <- sat@Sterm)(@ val <- val@Sterm): ["(" "^" id "<-" sterm ")"] iat loc val sat= (Sterm sterm iat loc val sat)(@ iat <- (add-b (mk-iattr-name id) val@Sterm iat@Sterm))(@ loc <- loc@Sterm)(@ sat <- sat@Sterm)(@ val <- val@Sterm): ["(" "^" id ")"] iat loc val sat= (Sterm ["(" "^" id "<-" id ")"] iat loc val sat)(@ iat <- iat@Sterm)(@ loc <- loc@Sterm)(@ sat <- sat@Sterm)(@ val <- val@Sterm): ["(" "if" bool c1 c2 ")"] iat loc val sat= (Sterm bool iat loc val sat)(if val@Sterm (Sterm c1 iat@Sterm loc@Sterm val@Sterm sat@Sterm) [])(if val@Sterm [] (Sterm c2 iat@Sterm loc@Sterm val@Sterm sat@Sterm))(@ iat <- iat@Sterm)(@ loc <- loc@Sterm)(@ sat <- sat@Sterm)(@ val <- val@Sterm): ["(" sterm els ")"] iat loc val sat= (Xec(Sterm sterm iat loc val sat)^mod(Els els iat@Sterm loc@Sterm val@Sterm sat@Sterm)iat@Els)(@ iat <- iat@Els)(@ loc <- (add-bs env@Xec loc@Els))(@ sat <- sat@Els)(@ val <- val@Xec): ["[" els "]"] iat loc val sat= (Els els iat loc val sat)(@ iat <- iat@Els)(@ loc <- loc@Els)(@ sat <- sat@Els)(@ val <- val@Els): ["<" ec ">"] iat loc val sat= (@ iat) (@ sat) (@ loc) (@ val <- ec): Denot iat loc val sat= Denot (@ iat) (@ sat) (@ loc) (@ val <- Denot): Id iat loc val sat= (@ iat) (@ sat) (@ loc) (@ val <- (lookup Id iat loc sat)): Number iat loc val sat= (@ iat) (@ sat) (@ loc) (@ val <- Number): failure? iat loc val sat= (@ iat) (@ sat) (@ loc) (@ val <- (mk-fail+ ^level))Figure 7.24: Semantic Term

7.5. THE SEMANTICS OF Meta-Lisp: PART II 1751. The semantic term given as the function term is evaluated �rst. It is assumed to evaluate tothe name of a currently de�ned concept belonging to the current module. Exception handlingcould be introduced in the de�nition of Xec if desired.2. The bindings created are passed on to the evaluation of the input elements.3. Then the concept { named by the value of the function term { is expanded in the currentmodule with input computed before.4. Note that the inherited attributes returned by the evaluation of the input elements are passedas a global environment to the expansion of the name e�ective concept.Note that the interpretation of input elements, given on page 178 will give the rightinterpretation of dotted invocation, see page 56 without the need for special rules.7.5.5.8 List Construction ["[" els "]"]In the invocation of e�ective concept as semantic functions, described above, the inputelements were made to form the input list with the implicit use of list constructions. Ele-ments enclosed by a pair of square brackets designate list-construction. The interpretationof elements is given on page 178.7.5.5.9 Conceptual Value ["<" ec ">"]Meta-Lisp treats e�ective concepts as �rst class objects. This feature is used to indicatethat a return value, an identi�er is taken to be the name of an e�ective concept belongingto the current module.7.5.5.10 Denotation DenotDenotations denote themselves.7.5.5.11 Identi�ers Id

176 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-LispIdenti�ers may have bindings in any one of the current environments. If they are not boundthen they are assumed to denote themselves. This feature corresponds to auto-quote insome dialects of LISP. The semantic function lookup is used to test if a given identi�er isbound, if it is than that binding is returned. If there is no binding the identi�er itself isreturned as a value.7.5.5.12 Number NumberNumbers denote themselves.7.5.5.13 Failure failure?The treatment of failure as a semantic value is problematic. Care is needed to distinguishfailure at the meta-level from failure at the object level. Failure as a value of a semanticactions needs to be distinguished from, say Sterm returning failure, because, say the inputto be interpreted was not grammatical.As the means of distinguishing between object level and meta level notions of failure, awhole hierarchy of failures have been introduced. The need for this has become apparent inmeta-meta-interpretation, i.e. when the interpreter was used to interpret itself interpretinganother program, (which could itself be the interpreter interpreting another program), etc.The de�nitions used to make this scheme work are shown in Figure 7.25. The solutiono�ered at the present to the problems related to failure requires further investigations.7.5.6 ElementsA sequence of elements can be combined to form a list. The construction of this list allowssplicing speci�ed elements into the list being constructed.7.5.6.1 Cons-ing an Element into a List[sterm els]The basic method of constructing a list of elements is to evaluate an element and construct-ing a list with that element as its �rst element and the rest of the list formed of the valuesof the remaining elements.

7.5. THE SEMANTICS OF Meta-Lisp: PART II 1771. Evaluate the element.2. Evaluate the remaining elements in an environment which holds the bindings created in thecourse of evaluating the �rst element.3. Return the bindings created in the course of evaluating the remaining elements4. return as the value a list with the value of the �rst element and the list value of the remainingelements as its tail.7.5.6.2 Splicing an element into a List["." sterm els]An elment is spliced into a list of elements by appending its value to the list of the values ofthe remaining elements.1. Evaluate the element.2. Evaluate the remaining elements in an environment which holds the bindings created in thecourse of evaluating the �rst element.3. Return the bindings created in the course of evaluating the remaining elements4. return as the value a list with the value of the �rst element appended to the list value of theremaining elements.7.5.6.3 Elements: Terminating Case '$The empty sequence of elements evaluates to the empty list.This completes the present account of the meta-circular interpreter for Meta-Lisp.Figure 7.27 shows the elementary de�nitions that were used.

178 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lispfailure?: stringp= (if (equal stringp (mk-fail ^level)) yes (mk-fail+ ^level))success?: with lisp success?mk-fail: with lisp mk-failmk-fail+: with lisp mk-fail+level: is integerp: <> = 0(defun success? (result level)(not (failed? result (1+ level))))(defun failed? (result level)(equal result (mk-fail level)))(defun mk-fail (level)(format nil "fail!~A" level))(defun mk-fail+ (level) (mk-fail (1+ level)))Figure 7.25: Dealing with FailureEls% els -> iat -> loc -> val -> sat -> <iat, loc, sat, val>: '$ iat loc val sat= (@ iat) (@ loc) (@ sat) (@ val <- []): ["." sterm els] iat loc val sat= (Sterm sterm iat loc val sat)(Els els iat@Sterm loc@Sterm val@Sterm sat@Sterm)(@ iat <- iat@Els)(@ loc <- loc@Els)(@ sat <- sat@Els)(@ val <- (append val@Sterm val@Els)): [sterm els] iat loc val sat= (Sterm sterm iat loc val sat)(Els els iat@Sterm loc@Sterm val@Sterm sat@Sterm)(@ iat <- iat@Els)(@ loc <- loc@Els)(@ sat <- sat@Els)(@ val <- (cons val@Sterm val@Els))Figure 7.26: Semantic Elements

7.5. THE SEMANTICS OF Meta-Lisp: PART II 179add-factor : with lisp consall-up-case : with lisp all-up-casealts : _aname : _anything : _append : with lisp appendapply : with lisp applyatom? : with lisp atombindings : _bool : _c1 : _c2 : _comp : _compos : _concat : with lisp concatcons : with lisp consec : identifierels : _env : _equal : with lisp equalexplode : with lisp explodefacs : _first : with lisp firstfn : _get-def : with lisp getget-factor : with lisp assocglob : _head : _iat : _id : _identifier : is identifierif : with lisp ifimplode : with lisp implodeinit-env : <>init-facs : <>init-store : <>input : _intern : with lisp internId : is identifieritem: $= fail!: anythingkey: identifier : stringplist : ._list2set : with lisp list2setloc : _member : with lisp memeqlmk-factor : listmk-iattr-name: ec = (implode (cons '#\^ (explode ec)))mk-sattr-name: aname ec= (if (all-up-case (append (explode aname) (explode ec)))(intern (concat (string aname) "@" (string ec)))(intern (concat (my-symbol-name aname) "@" (my-symbol-name ec))))

180 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lispmod : is keywordpmodule : is keywordpmy-symbol-name : with lisp my-symbol-namenull : is nullnull?: null= t: <>object : itemobjects: object objects= [object . objects]: object= [object]pred : _present?: null: [ec suf env val head] input= (if (equal (first input) head) { (@ suf) (@ env) (@ val) (@ head) ec } [])rec : _rest : with lisp cdrsat : _sem : _start : _sterm : _sterms : _string : with lisp stringstringp : is stringpsuf : _synt : _val : _ Figure 7.27: Elementary De�nitions7.6 DiscussionThis section presents some of the experiments with the meta-circular interpreter carried outto date. It concludes with a brief discussion of some of the lessons learned.7.6.1 Meta-Interpreting the Meta-circular InterpreterOne of the advantages of developing a meta-circular interpreter is that self-application pro-vides an extensive test of its capabilities. The programs in Chapter 6 (including the lexicalanalyser, the abstractor, and the interpreter, were successfully interpreted by the meta-circular interpreter. In fact, the program was run by running the meta-interpreter, running

7.6. DISCUSSION 181the meta-interpreter running the calculator program. Each level of meta-interpretation hasincreased the overall runtime by two orders of magnitude. Since three levels of interpreta-tion involves 100�100, i.e. four orders of magnitude increase in run-time only a very simpleprogram have been run to illustrate meta-interpretation3. The approximate runtimes were0.2, 20 and 2000 seconds respectively.| ?= (mci mci :mci 1 (mci :mci 2 (expr :expr 3 (1 * 2 + 4))))| mci :mci 1 (mci :mci 2 (expr :expr 3 (1 * 2 + 4))))|------------|suf@mci = ()env@mci = ()val@mci = (+ (* 1 2) 4)mci = (+ (* 1 2) 4)7.6.2 ReectionsReecting on the experience of writing a denotational style interpreter in Meta-Lisp Iwould like to make the following observations:� Writing any description of the semantics of a non-trivial language is di�cult.� working out the details in full is not only the object of the exercise but it is also theprimary means of arriving at a satisfactory de�nition of the language� The warning given by Tofte is highly appropriate: \Hacking a machine readable lan-guage de�nition must never be seen as a substitute for thinking seriously about thesemantics of the language."[Tof90, page 111]� Writing denotational style interpreters in Meta-Lisp clearly indicates the desirabilityof type checking.� The meta-circular interpreter will be the starting point for the development of a type-discipline for Meta-Lisp.I would like to conclude this chapter by quoting Tofte's apt admonition:The best one can do when writing proofs (or compilers or compiler generators,for that matter) is to care. Only from feeling of having been careful can somelevel of con�dence emerge. [Tof90, page 111]

182 CHAPTER 7. META-CIRCULAR DEFINITION OF Meta-Lisp

Chapter 8ImplementationThis chapter describes the implementation of the programming language Meta-Lisp andits associated programming environment. The chapter is divided into three sections. The�rst Section outlines the stages in the development of the implementation of the language.Section two discusses the implementation of the programming environment. Section threediscusses directions for further development.8.1 Implementing Meta-LispThe implementation strategy that relies on the facilities provided by a language to com-pile itself is called bootstrapping. [ASU86, 725]. Bootstrapping is a particularly attractivestrategy for the initial implementation of a new programming language. To begin with,a compiler is developed for only a subset of the intended new language. This minimallanguage is implemented with minimum sophistication in a short order. The addition offurther constructs and capabilities can then be carried out in a piecemeal fashion, usingbootstrapping. A further advantage of bootstrapping follows from the fact that a compilerfor a programming language, itself is a complex program. Having to write such a programin its own language, can help the designer of the language to re�ne the facilities providedby the language. In addition, the compilation of a compiler written in its own languageprovides a useful benchmark for (regressive) testing of the compiler itself.A compiler for a programming language is characterised by three languages: the sourcelanguage S that it compiles, the target language T that it generates, and the implementationlanguage I that it is written in. These three languages that characterise a compiler areusually represented in a diagram forming a T, called a T-diagram.[Bra61]183

184 CHAPTER 8. IMPLEMENTATIONS ! TIThe notation used to refer to a compiler with the three languages S,T and I is to writeS!I T .Bootstrapping poses the problem: how to obtain the �rst compiler, to begin with.One possible approach is to hand-compile a compiler for a subset of the language intothe implementation language to obtain the �rst compiler for the language. An alternativeapproach, the one that was adopted here, is to construct an interpreter for a subset ofthe language �rst, and to use that interpreter as the means of running the compiler. Aninterpreter is characterised by two languages: the language that it interprets L, and thelanguage that it is implemented in I. It is represented diagrammatically asILFor the above scheme to work, the interpreter itself had to be written in a language thatis already implemented on a machine. The diagrammatical notation for representing amachine which executes a (machine) language is show below:

JJJ IThese boxes can be composed to form description of systems involving compilers, inter-preters, any kinds of translators, in fact, and machines capable of executing programs in agiven language. Placing these boxes on top of each other denotes interpretation. Placingthem adjacent to each other horizontally denotes translation.In implementing Meta-Lisp, LISP was used both as the target language of its compilerand the language in which the �rst interpreter for a subset of the language was written. 1The subset of Meta-Lisp, for which the �rst compiler was constructed, is referred to asMtL0. A compiler for it for was constructed as follows:� First, an interpreter was written in LISP for MtL0.1Given LISP's reputation as the \machine language" for Arti�cial Intelligence, this choice is very natural.[All78, 243]

8.1. IMPLEMENTING Meta-Lisp 185� Then a compiler (MtL0 !LISPLISP) was written for this subset in itself designed togenerate LISP code� a compiler for MtL0 to LISP in LISP, MtL0 !LISPLISP , was �nally obtained by run-ning the compiler for MtL0 written in itself, MtL0 !MtL0LISP , using the interpreterfor MtL0 written in LISP, i.e. MtL0 !LISPLISPThis process is illustrated in Figure 8.1. It shows a run of the translator MtL0 !MtL0LISPwith the de�nition of itself MtL0 !MtL0LISP as input producing a LISP implementation ofthe translator for MtL0 into LISP.MtL0 ! LISPMtL0 MtL0 ! LISPLISPMtL0 ! LISPMtL0LISPMtL0

JJJLISPFigure 8.1: The Construction of the First CompilerMtL0 included the following features of Meta-Lisp:� top-down limited backtrack translation� description of nested list structures� lisp forms as semantic actions with the addition of the feature of invoking MtL0translation procedures as semantic functionsThe compiler generated by this process made the original interpreter superuous. Al-though the performance of the generated code was an improvement over the interpreter, itwas still hopelessly ine�cient. The expressive power of MtL0 was also painfully restrictiveat that point. Bootstrapping was used both as the means of improving the performance ofthe implementation as well as introducing new features into the language.

186 CHAPTER 8. IMPLEMENTATION8.1.1 ExtensionsThe introduction of a set of new language features using bootstrapping involves the followingsteps:� write a new compiler for the extended language (MtL0) in the currently implementedform of the language (MtL).� compile it with the existing compiler to obtain an implementation of the describednew extensions of the language� rewrite the new compiler in the new, extended language MtL0� compile it with the new compilerAs the result of the last step a the implementation reaches a new meta-stable state,i.e. when the compiler obtained in the last step compiles itself it produces a copy of itself.This also implies that the language implementation becomes independent of any previouscompilers. This process is illustrated by Figure 8.2:MtL0 ! LISPMtL0 MtL0 ! LISPLISPMtL0 ! LISPLISPMtL ! LISPLISPMtL0 ! LISPMtLFigure 8.2: Extending the LanguageThe above process was repeated four times over the development of Meta-Lisp tointroduce the following features:1. left-recursion and left-factoring2. list-construction3. attributes4. `conceptual' parameters and importing e�ective concepts from other packages

8.1. IMPLEMENTING Meta-Lisp 1878.1.2 OptimisationImproving the performance of the generated LISP code involved the following steps:� write a new compiler that generates more e�cient code (LISP 0) in the currentlyimplemented form of the language (MtL).� compile it with the existing compiler to obtain a new optimised compiler, which itselfis still implemented in a less optimal way.� compile the de�nition of the new optimised compiler again, this time with the pre-viously obtained \hybrid" compiler, to obtain an optimised compiler which is alsoimplemented in a more e�cient way then before.The result of the last step, again, is a meta-stable implementation. The procedure forobtaining a new, optimised form of the Meta-Lisp compiler is illustrated in Figure 8.3:MtL ! LISP 0MtL MtL ! LISP 0LISP 0MtL ! LISP 0LISPMtL ! LISPLISPMtL ! LISP 0MtLFigure 8.3: Optimising the Implementation8.1.2.1 Left-factorisationThe idea of left-factorisation was introduced in Chapter 2 Section 2.2.1 as a grammartransformation technique used to make a grammar suitable for predictive parsing. In theimplementation of Meta-Lisp, left-factorisation is applied not to the grammar but a�ectsthe procedural interpretation of the translation rules. The compiler identi�es those rulesthat share a common pre�x, and arranges for code to be generated such that the commonpre�x is expanded only once, and only when that expansion is successful will the remaindersof the rules be expanded as usual for alternatives. The bindings created in the course ofthe expansion of the common pre�x are passed to the semantic actions associated with allthe rules that had a common pre�x.

188 CHAPTER 8. IMPLEMENTATION8.1.2.2 ParameterisationMuch of the power and convenience of LISP derives from the fact that its fundamental datastructure is lists. Doing everything in lists can be elegant, but is costly. Unfortunately thereare no automatic means of providing cheaper alternative storage structure to replace listsinvisibly. The Elisp of Emacs [KLL+] and the Window Object Oriented Lisp of the GeneralWindow Manager [Nah91] are notable attempts in this direction. Meta-Lisp, in compari-son, can be said to provide an even more expensive data structure than LISP: list structuresde�nable by grammar rules. The manipulation of these structures can easily be more ex-pensive than the manipulation of list structures. Fortunately, there is a way of providing allthe extra expressive power of de�ning list structures through grammatical means withoutloss of e�ciency. The key to this is that it is possible to distinguish between de�nitionsthat really require parsing to take place, and those that require only pattern matching. Themeta-circular compiler for Meta-Lisp applies such an analysis. This analysis is referred toa parameterisation.The performance of the compiler is approximately 2000 lines per minute including com-pilation by the LISP compiler,(or about 4000 lines per minute excluding compilation byLISP), on an IPC workstation running Lucid Sun Common Lisp version 4.0.1.

8.2. THE Meta-Lisp PROGRAMMING ENVIRONMENT 1898.2 The Meta-Lisp Programming EnvironmentThe Programming Environment for Meta-Lisp provides most of the usual facilities thatare expected of languages for symbolic computations. These include� Incremental Entry of Programs� Separate Compilation� Debugging Facilities� Browsing Facilities� Integration with Emacs<n> : do <n> stepsa[bort] : abort executionb[reak] : enter a new break levelc[reep] : switch to creep moded[evelop] : enter development toole[dit] : edit current conceptf[ail] : fail the current expansionh[elp] : print this helpl[eap] : leap to next spy pointL[eap] : leap and show the tracen[odebug] : switch off debugging and continue executionr[eturn] : return current concepts[kip] : skip spypoints until current call returnsS[kip] : skip and show the tracet[race] : Show trace on spypoints without stopping+ : add spypoint to the current concept- : remove spypoint from the current concept; : backtrack one step; <int> : backtrack <int> steps< n : set print depth to <n>Figure 8.4: Trace CommandsA User Manual for Meta-Lisp is under preparation. [Laj93]

190 CHAPTER 8. IMPLEMENTATION

Chapter 9ConclusionThis chapter summarises the main contributions of this dissertation. It also indicates di-rections for future work. The Chapter concludes with a brief discussion of the place ofMeta-Lisp in relation to other languages for symbolic computations.9.1 ContributionsThe starting point of this dissertation was the observation that the set of valid inputs to aprogram can be regarded as a form of computer language { an input data language. It wasthen proposed that programs can be viewed as interpreters or compilers of their input datalanguage. The central thesis of this dissertation has been that the adoption of this languageoriented view of programs leads to the establishment of a new programming style, accordingto which programs are designed and speci�ed as translators of their input language.As the means of exploring the potential of language oriented programming the design andimplementation of a new programming language, called Meta-Lisp, have been presented.Meta-Lisp combines the syntax-directed model of computation with the functional modelin one language. The language meets the following design objectives:� It provides linguistic support for the design of programs as translators of their inputlanguage. That is to say, it supports programming in the language oriented style.� Meta-Lisp integrates well with LISP, which means{ inter-operability, i.e. Meta-Lisp programs can incorporate LISP functions andvice versa{ the gain in expressive power over LISP has been achieved without loss in e�ciency191

192 CHAPTER 9. CONCLUSION� The de�nitional power of the language is not excessive. This has been achieved by{ tying the language-de�nitional formalism to a particular { transparent { parsingalgorithm.{ �xing the order of evaluation in the semantic actions.From the standpoint of programming methodology the main contribution of the presentwork is to o�er a uniform design methodology. It is uniform, since at every level theprogrammer faces the following tasks:� De�ne the set of valid inputs to the program explicitly as a language.� the guiding principle for such de�nition is that the structure thereby imposed on theinput should reect the conceptual structure of the problem domain� the semantic actions that are to be associated with each rule of the grammar thatde�ne the set of valid input to the program are to be formulated to reect the ap-plicative structure of solutions that the program is to o�er to problems describable interms of the input language of the program.The case studies presented in this thesis served to demonstrate the success of the languageorinted methodology. The Meta-Lisp sytems contains a great number of programs writtenin Meta-Lisp. Nearly everything in the system is written in Meta-Lisp.The best words that I can �nd to capture the essence of the methodology of languageoriented programming inMeta-Lisp were written twenty years ago by Dijkstra in his Turingaward lecture speculating on the form of \future" programming languages. Meta-Lisp canbe said to invite us \to reect in the structure of what we write down all the abstractionsneeded to cope conceptually with the complexity of what we are designing" [Dij72, 865]9.2 Future WorkThe future work discussed in this section encompasses improvements to, and enhancementof Meta-Lisp, the language, and its associated programming system.9.2.1 ImprovementsThe areas of planned improvements include the incorporation of `copying' rules for synthe-sised attributes into the language, improvements to the module system, exception handlingand support for meta-programming.

9.2. FUTURE WORK 193Looking at the code for the meta-circular interpreter makes a convincing case for theneed of rules governing the copying of synthesised attributes. Attribute grammars have beencriticised in the literature for the same prevalence of copying rules. It appears, that easyaccess to \long-distance"' [Wai90, 261] relationships between attributes could be providedin Meta-Lisp by a suitable modi�cation of its semantics. This needs further investigation.The facility for importing the functionality of e�ective concepts from other modules isrudimentary. It constitutes a single, unstructured name space of modules. Work needs tobe done to make this more sophisticated.A not unrelated problem concerns the integration ofMeta-Lisp with LISP. The seman-tics of Meta-Lisp as de�ned by the meta-circular interpreter, exclude the importation ofLISP macros. The compiler allows this. It seems desirable that this discrepancy be resolvedin favour of the compiler; i.e. to allow macros to be incorporated intoMeta-Lisp programs.Exceptional situations and error handling, in general, have been rather neglected. Theseissues will need to be addressed in the future.The price of Meta-Lisp's gain in expressive power, when it is compared to LISP, hasbeen the loss of one of LISP's main asset: the uniformity of representation of programsand data. Meta-Lisp being a meta-language, per se, allows the routine construction ofmeta-programs, i.e. programs that treat another program as data. However, it is nothinglike as straight-forward as in LISP, or PROLOG for that matter. 1 Work needs to bedone to develop the mechanisms for disciplined access to the meta-programs in the Meta-Lisp system (the interpreter, the compiler, reader, printer, partial evaluator, type checker,etc) and their components. There is also a need to relate the present work to the results ofresearch on meta-programming in logic programming [HL89] and reection in LISP [Smi84].9.2.2 EnhancementsThere is plenty of scope for future enhancements. Some of these concern the design ofMeta-Lisp itself, others concern the environmental support. There is a great deal ofoverlap between the two, too.9.2.2.1 Type CheckingMeta-Lisp is an untyped language. As in the case of LISP, this can be a great asset forthe purpose of exploratory programming. In particular, it makes it possible to interleavetesting and development to a much greater extent than in typed languages. In the case1This may turn out to be more of an asset, than a liability.

194 CHAPTER 9. CONCLUSIONof LISP, this makes \debugging the nil program" a serious candidate for a model of thesoftware development process. Similarly, in Meta-Lisp, even an incomplete elaboration ofa program will work and may produce meaningful output, if the input on which it is testedbelongs to the (partially de�ned) input language of the program. Even if the input is notacceptable (yet) the program can be run and examined. This can even help to debug thedesign of the input language itself. There are certain circumstances, however, where thetypeless character of the language is a disadvantage. Experience in writing denotationalstyle language de�nitions in Meta-Lisp has clearly demonstrated this. The ideal solutionappears to be to develop a type inference scheme for Meta-Lisp { a way of �nding outthe type of an e�ective concept from its de�nition { to be incorporated into a type checkerwhich could be enabled or disabled depending on the current requirements of programdevelopment.9.2.2.2 Partial EvaluationA related area of future enhancements, this time of the programming system, is the develop-ment of a partial evaluator for Meta-Lisp. Partial evaluation is a program transformationtechnique which specialises programs with respect to given incomplete data. The devel-opment of partial evaluators for all kinds of languages (Scheme, PROLOG, the lambdacalculus, etc) has recently become a very active research area. Partial evaluation is be-ing used in program transformation, semantics directed compiler generation, generation ofcompiler-compilers, etc. For references see [GJ91].The motivation for the development of a partial evaluator for Meta-Lisp is twofold.First, it could be used to generate a compiler for Meta-Lisp from its denotational stylemeta-circular de�nition. Secondly, it could be used to generate compilers for other languagesfrom their denotational style interpreter written in Meta-Lisp. The expectation is thatthis would open up another avenue for semantics directed compiler generation, includingthe implementation of \designer" languages, in accordance with the basic philosophy oflanguage oriented programming.9.2.2.3 Program InversionMost of the bene�ts of language oriented programming in Meta-Lisp derive from the factthat the design of every program, and every non-elementary procedure in every program,is based on an explicit de�nition of their inputs as a language. Although the output of aprogram is also regarded as a language, according to the language oriented view of programs,Meta-Lisp does not provide linguistic support for this. Instead, the set of valid outputs

9.3. DISCUSSION 195are `de�ned' only, implicitly. Under certain conditions, it is apparent that an appropriatede�nition of the outputs of a program as a language can be inferred from the de�nitionof the program. Such a de�nition could, in principle, be used as the basis for generatinginverse programs, as a generalisation of the idea of `unparsers', c.f. [All78, 422].9.2.2.4 Automatic Generation of Test DataBy the generative use of the explicit grammatical description of the set of valid inputs toa program, suites of test data can be produced automatically. This facility can be usednot only in testing, but as a means of evaluating the `competence' of the program in itsintended �eld of application.9.3 DiscussionThe intended application area of Meta-Lisp is symbolic computation. This section o�ersbrief comparisons of Meta-Lisp with four representatives of established programming lan-guages for symbolic computation. The four languages that will be discussed are SNOBOL4,ML, Prolog and LISP.SNOBOL4 is programming language for string manipulation. The input to a SNOBOL4program is a string. The output is also a string. A SNOBOL4 program applies string match-ing and manipulation of its input to produce its output. In its perspective on programmingit can be said to show some resemblance to the language oriented view. A major sourceof di�erence is that the basic data-structure of SNOBOL4 is the string, whereas it is liststructures in Meta-Lisp. Whereas the structure of the input, in Meta-Lisp is de�nedusing a grammar, in SNOBOL4 the input is de�ned implicitly through a range of patternmatching operations. These operations are quite powerful, and in certain cases can even besaid to resemble the style of Meta-Lisp de�nitions. Grammatical structures, however, canonly be described in terms of low level string matching operations which tend to be opaque.Compare a SNOBOL4 program for translating arithmetic expressions from in�x to pre�xnotation [GPP68, 104-108].ML is a strongly typed functional language. It uses pattern matching as its param-eter passing mechanism. In contrast, Meta-Lisp uses syntax-directed translation as itsparameter passing mechanism. As syntax-directed translation properly subsumes patternmatching, Meta-Lisp can o�er capabilities not possessed by functional languages: theseinclude support for data abstraction, representation independent or level-wise programming(see page 37), as well as support for parser construction. Meta-Lisp's syntax-directed

196 CHAPTER 9. CONCLUSIONparameter passing mechanism encourages the use of abstract analysers as an e�cient formof data-abstraction. (See chapter 3). The usefulness of Meta-Lisp support for automaticparser-construction even on its own, can be judged from the point made by Wikstr�om that aparser generator is a tool that should accompany an ML system for production use [Wik87,294]. An example of this is the grammar feature of CAML [WAL+90].ML also provides facilities for abstract data-types. Meta-Lisp does not provide explicitsupport for this. It is left as a matter of style of writing programs. Incorporating the ideasof abstract data-types into Meta-Lisp will be considered in the future. The planneddevelopment of a type-inference scheme for Meta-Lisp will further reduce the di�erencesbetween ML and Meta-Lisp.What is common to both ML as a functional language andMeta-Lisp as a language ori-ented programming language, is that they both make commitments about which quantitiesare inputs and which are outputs. This can be contrasted to logic programming languages,such as Prolog, that do not make such commitments [Red86, 3]. The multidirectionalityof Prolog is a consequence of the fact that Prolog uses uni�cation as its calling mechanism[DFP86, 45]. It gives capabilities to Prolog not possessed by ML, or Meta-Lisp for thatmatter. Through the use of operator declarations Prolog also has explicit language de�ni-tional capabilities. In terms of expressive power, Prolog is clearly superior. However, thisextra expressive power of Prolog, can be said to be a mixed blessing. For example, themultidirectionality of Prolog means in practice that \programmers have to devote as muchtime to think about the di�erent tasks a relation might do, as they would in writing a setof functions for these tasks in any other language" [McD80].The semantic backtracking mechanism of Meta-Lisp can be used to provide multiplesolutions through backtracking. See page 103. In Meta-Lisp backtracking has to beexplicitly requested, and even then it is limited. It seems preferable to explicitly requestbacktracking rather than prune automatic backtracking with judicious use of cut, as inProlog.The greatest price that is paid for Prolog's extra expressive power is that it is di�cultto envisage the possible computations that a Prolog clause may give rise to under varyingcircumstances. Meta-Lisp's emphasis on transparent operational semantics was motivatedby the desire to avoid the problem associated with excessive de�nitional power.The relationship between LISP and Meta-Lisp can be likened to the relationship thatexists between a high-level language and a machine language in which it is implemented. Fora long time, LISP has been regarded as \the `machine language' for Arti�cial Intelligence"[All78, 243]. Even earlier, LISP have been referred to as an implicit meta-language.[Ing66,

9.3. DISCUSSION 197115-6] Meta-Lisp can be considered as an extension of LISP, which makes the meta-language character of LISP explicit. In doing so, it inherits a lore of methodological insightswhich have always been part of the LISP tradition. The present work, ultimately, is ded-icated to the LISP programmer who may now pen his thoughts within fewer parenthesesand yet let his ever present linguistic insights master the complexity of his task with greaterease.

198 CHAPTER 9. CONCLUSION

Bibliography[Ada90] Stephen Adams. Towards language-oriented programming. Technical ReportCSTR 90-5, Department of Electronics & Computer Science, University ofSouthampton, February 1990.[All78] John Allen. Anatomy of Lisp. McGraw-Hill, 1978.[ASS85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-pretation of Computer Programs. The MIT Press, Cambridge, Massachusetts,1985.[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-niques, and Tools. Addison Wesley, 1986.[AU72] Alfred V. Aho and Je�rey D. Ullman. The Theory of Parsing, Translation, andCompiling. Prentice-Hall, Inc., Englewood Cli�s, N.J., 1972.[Ben86] Jon Bentley. Programming pearls { little languages. Communications of theACM, 29(8):711{721, August 1986.[Ben90] J.P. Bennet. Introduction to Compiling Techniques { A �rst Course using ANSIC, LEX and YACC. McGraw-Hill Book Company, 1990.[BK86] J.L. Bentley and B.W. Kernighan. Grap { a language for typesetting graphs.Communications of the ACM, 29(8):782{792, 1986.[Bra61] H. Bratman. An alternate from of the `Uncol diagram'. Comm. ACM, 4(3):142,1961.[DFP86] John Darlington, A. J. Field, and H. Pull. The uni�cation of functional and logiclanguages. In Doug DeGroot and Gary Lindstrom, editors, Logic Programming,Functions, Relations, and Equations, pages 37{70. Prentice-Hall, 1986.199

200 BIBLIOGRAPHY[Dij72] Edsger W. Dijkstra. The Humble Programmer. CACM, 15(10):859{866, October1972.[DJ83] P. M. Dew and K. R. James. Introduction to Numerical Computation in Pascal.MacMillan, 1983.[DM88] Pierre Deransart and Jan Maluszynski. A grammatical view of logic program-ming. In P. Deransart and J. Malunszynski, editors, Programming LanguagesImplementation and Logic Programming, Lecture Notes in Computer Science138, pages 219{252. Springer-Verlag, 1988.[Fey84] Stefan Feyock. Syntax programming. In AAAI-84: Proceedings { Sixth Na-tional Conference on Arti�cial Intelligence, pages 110{115, Austin, Texas, Au-gust 1984.[FSO91] R. Furuta, P. D. Stotts, and J. Ogata. Ytracc: A parse browser for yacc gram-mars. Software { Practice and Experience, 21(2):119{132, February 1991.[GJ91] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untypedlambda-calculus. Journal of Functional Programming, 1(1):21{69, January 1991.[GLSS75] Jr. Guy Lewis Steele and Gerald Jay Sussman. Scheme: An interpreter for theextended lambda calculus. Technical Report 349, MIT Arti�cial IntelligenceLaboratory, 1975.[GM86] Joseph A. Goguen and Jos�e Meseguer. Eqlog: Equality, types and genericmodules for logic programming. In Doug DeGroot and Gary Lindstrom, ed-itors, Logic Programming: Functions, Relations, and Equations, pages 295{363.Prentice-Hall, 1986.[Gou88] K. John Gough. Syntax Analysis and Software Tools. Addison-Wiesley Publish-ing Company, 1988.[GPP68] R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL4 ProgrammingLanguage. Prentice-Hall Inc., 1968.[Hen80] Peter Henderson. Functional Programming { Application and Implementation.Prentice-hall International Series in Computer Science. Prentice-Hall Interna-tional, 1980.

BIBLIOGRAPHY 201[HL89] P.M. Hill and J.W. Lloyd. Analysis of meta-programs. In Harver Abramsonand M.H. Rogers, editors,Meta-Programming in Logic Programming, Logic Pro-gramming. The MIT Press, 1989.[Hor89] R. Nigel Horspool. ILALR: An Incremental Generator of LALR(1) Parsers. InD. Hammer, editor, Compiler Compilers and High Speed Compilation, volume371 of LNCS, 2nd CCHSC Workshop, Berlin, GDR, October 10-14, 1988, 1989.[Ing66] Peter Zilahy Ingerman. A Syntax-Oriented Translator. Academic Press, 1966.[Joh79] S. Johnson. YACC: Yet Another Compiler-Compiler. Bell Laboratories, 1979.[KLL+] Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman, and ChrisWelty. GNU Emacs Lisp Reference Manual. Free Software Foundation.[Knu68] Donald E. Knuth. Semantics of context-free languages. Math. Syst. Theory 2,1968.[Kos84] Kai Koskimies. A speci�cation language for one-pass semantic analysis. InProceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction,volume 19 of SIGPLAN Notices, pages 179{189, June 1984.[Kow79] Robert Kowalski. Logic for Problem Solving. North-Holland, 1979.[Laj90] G. Lajos. Language-directed programming in meta-lisp. In EUROPAL'90: TheFirst European Conference on the Practical Applications of Lisp, Churchill Col-lege Cambridge, UK,, 1990.[Laj93] G. Lajos. Meta-LispUsers's Manual. School of Computer Studies, The Uni-versity of Leeds, Leeds LS2 9JT, 1993.[MAE+65] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, andMichael I. Levin. LISP 1.5 Programmer's Manual. The Computation Centerand Research Laboratory of Electronics, Massachusetts Institute of Technology,The M.I.T. Press, 1965.[Mar83] Jed Marti. The Little META Translator Writing System. Software { Practiceand Experience, 13:941{959, 1983.[McC60] John McCarthy. Recursive functions of symbolic expressions and their compu-tation by machine, part i. Communications of the ACM, 3(4):184{195, April1960.

202 BIBLIOGRAPHY[McC80] John McCarthy. Lisp - notes on its past and future. In The 1980 LISP Confer-ence, Stanford, 1980.[McD80] D. McDermott. The PROLOG phenomena. SIGART Newsletter 72, pages 16{20, 1980.[Mos79] P. D. Mosses. SIS { semantics implementation system, reference manual anduser guide. Technical Report DAIMI MD-30, Aarhus University, 1979.[Nah91] Colas Nahaboo. GWM Manual: The X11 Generic Window Manager. KOALAProject { BULL Research, 1989-1991.[NF89] Tim Nicholson and Norman Foo. A denotational semantics for prolog. ACMTransaction on Programming Languages and Systems, 11(4):651{665, October1989.[Pag81] Frank G. Pagan. Formal Speci�cation of Programming Languages, A PanoramicPrimer. Prentice-Hall Inc., 1981.[Pau84] Lawrence Paulson. Compiler generation from denotational semantics. InB. Lorho, editor, Methods and Tools for Compiler Construction, pages 219{250.Cambridge University Press, 1984.[PC89] James J. Purtilo and John R. Callahan. Parse-tree annotations. CACM,32(12):1467{1477, 1989.[Pra75] Terrence W. Pratt. Programming Languages: Design and Implementation.Prentice-Hall, 1st edition, 1975.[Red86] Uday S. Reddy. On the relationship between logic and functional languages.In Doug DeGroot and Gary Lindstrom, editors, Logic Programming, Functions,Relations, and Equations, pages 3{36. Prentice-Hall, 1986.[Rey72] J. C. Reynolds. De�nitional interpreters for higher-order programming lan-guages. In Proceedings of the 25th ACM National Conference, pages 717{740,Boston, 1972.[San82] David Sandberg. LITHE: A language combining a exible syntax and classes.In Conference Record of the Ninth Annual ACM Symposium on Principles ofProgramming Languages, pages 142{145, January 1982.

BIBLIOGRAPHY 203[Sch64] D. V. Schorre. Meta-II: a syntax-oriented compiler writing language. In Proc.19th ACM National Conf., pages D1.3{1{D1.3{11, 1964.[Sch86] David A. Schmidt. Denotational Semantics: A Methodology for Language De-velopment. Allyn and Bacon, Inc., 1986.[Smi84] Brian Cantwell Smith. Reection and semantics in Lisp. In Eleventh An-nual ACM Symposium on the Principles of Programming Languages, volume 11,pages 23{35, Salt Lake City, Utah, January 1984.[Spi88] J. M. Spivey. Understanding Z { A Speci�cation language and its formal se-mantics. Number 3 in Cambridge Tracts in Theoretical Computer Science.Cambridge University Press, 1988.[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-gramming Language Semantics, volume 1. of The MIT Press Series in ComputerScience. The MIT Press, 1977.[Tof90] Mads Tofte. Compiler Generators: What they Can Do, What They might Do,and What They Will Probably Never Do, volume 19 of ETACS Monographs onTheoretical Computer Science. Springer-Verlag, 1990.[Wad87] Philip Wadler. A way for pattern matching to cohabit with data abstraction. InFourteenth Annual ACM Symposium on Principles of Programming Languages,pages 307{313, 1987.[Wai90] W. M. Waite. Use of Attribute Grammars in Compiler Construction. In P. De-ransart and M. Jourdan, editors, Attribute Grammars and their Applications,volume 461 of LNCS, International Conference WAGA Paris, France, September1990. Springer-Verlag.[WAL+90] Pierre Weis, M�aria-Virginia Aponte, Alain Laville, Michel Mauny, and Asc�anderSu�arez. The CAML Reference Manual. Technical Report Version 2.6, ProjetFormal, INRIA-ENS, 1990.[Wan84] M. Wand. A Semantic Prototyping System. In Proceedings of the ACM SIG-PLAN '84 Symp. on Compiler Construction, volume 19 of SIGPLAN Notices,pages 213{221, Montreal, June 1984.[Wei67] Clark Weissman. LISP 1.5 PRIMER. Dickenson Publishing Company, Inc.,Belmont, California, 1967.

204 BIBLIOGRAPHY[Wex81] R. L. Wexelblat. History of Programming Languages. Academic Press, 1981.[Wik87] Ake Wikstr�om. Functional Programming Using Standard ML. Prentice Hall,London, 1987.[Win83] Terry Winograd. Language as a Cognitive Process: Syntax, volume 1. Addison-Wesley, 1983.[YN88] Yoshiyuki Yamashita and Ikuo Nakata. Coupled context-free grammar as aprogramming paradigm. In P. Deransart and J. Malunszynski, editors, Pro-gramming Languages Implementation and Logic Programming, Lecture Notes inComputer Science 138, pages 132{145. Springer-Verlag, 1988.

Bibliography[Ada90] Stephen Adams. Towards language-oriented programming. Technical ReportCSTR 90-5, Department of Electronics & Computer Science, University ofSouthampton, February 1990.[All78] John Allen. Anatomy of Lisp. McGraw-Hill, 1978.[ASS85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-pretation of Computer Programs. The MIT Press, Cambridge, Massachusetts,1985.[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-niques, and Tools. Addison Wesley, 1986.[AU72] Alfred V. Aho and Je�rey D. Ullman. The Theory of Parsing, Translation, andCompiling. Prentice-Hall, Inc., Englewood Cli�s, N.J., 1972.[Ben86] Jon Bentley. Programming pearls { little languages. Communications of theACM, 29(8):711{721, August 1986.[Ben90] J.P. Bennet. Introduction to Compiling Techniques { A �rst Course using ANSIC, LEX and YACC. McGraw-Hill Book Company, 1990.[BK86] J.L. Bentley and B.W. Kernighan. Grap { a language for typesetting graphs.Communications of the ACM, 29(8):782{792, 1986.[Bra61] H. Bratman. An alternate from of the `Uncol diagram'. Comm. ACM, 4(3):142,1961.[DFP86] John Darlington, A. J. Field, and H. Pull. The uni�cation of functional and logiclanguages. In Doug DeGroot and Gary Lindstrom, editors, Logic Programming,Functions, Relations, and Equations, pages 37{70. Prentice-Hall, 1986.205

206 BIBLIOGRAPHY[Dij72] Edsger W. Dijkstra. The Humble Programmer. CACM, 15(10):859{866, October1972.[DJ83] P. M. Dew and K. R. James. Introduction to Numerical Computation in Pascal.MacMillan, 1983.[DM88] Pierre Deransart and Jan Maluszynski. A grammatical view of logic program-ming. In P. Deransart and J. Malunszynski, editors, Programming LanguagesImplementation and Logic Programming, Lecture Notes in Computer Science138, pages 219{252. Springer-Verlag, 1988.[Fey84] Stefan Feyock. Syntax programming. In AAAI-84: Proceedings { Sixth Na-tional Conference on Arti�cial Intelligence, pages 110{115, Austin, Texas, Au-gust 1984.[FSO91] R. Furuta, P. D. Stotts, and J. Ogata. Ytracc: A parse browser for yacc gram-mars. Software { Practice and Experience, 21(2):119{132, February 1991.[GJ91] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untypedlambda-calculus. Journal of Functional Programming, 1(1):21{69, January 1991.[GLSS75] Jr. Guy Lewis Steele and Gerald Jay Sussman. Scheme: An interpreter for theextended lambda calculus. Technical Report 349, MIT Arti�cial IntelligenceLaboratory, 1975.[GM86] Joseph A. Goguen and Jos�e Meseguer. Eqlog: Equality, types and genericmodules for logic programming. In Doug DeGroot and Gary Lindstrom, ed-itors, Logic Programming: Functions, Relations, and Equations, pages 295{363.Prentice-Hall, 1986.[Gou88] K. John Gough. Syntax Analysis and Software Tools. Addison-Wiesley Publish-ing Company, 1988.[GPP68] R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL4 ProgrammingLanguage. Prentice-Hall Inc., 1968.[Hen80] Peter Henderson. Functional Programming { Application and Implementation.Prentice-hall International Series in Computer Science. Prentice-Hall Interna-tional, 1980.

BIBLIOGRAPHY 207[HL89] P.M. Hill and J.W. Lloyd. Analysis of meta-programs. In Harver Abramsonand M.H. Rogers, editors,Meta-Programming in Logic Programming, Logic Pro-gramming. The MIT Press, 1989.[Hor89] R. Nigel Horspool. ILALR: An Incremental Generator of LALR(1) Parsers. InD. Hammer, editor, Compiler Compilers and High Speed Compilation, volume371 of LNCS, 2nd CCHSC Workshop, Berlin, GDR, October 10-14, 1988, 1989.[Ing66] Peter Zilahy Ingerman. A Syntax-Oriented Translator. Academic Press, 1966.[Joh79] S. Johnson. YACC: Yet Another Compiler-Compiler. Bell Laboratories, 1979.[KLL+] Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman, and ChrisWelty. GNU Emacs Lisp Reference Manual. Free Software Foundation.[Knu68] Donald E. Knuth. Semantics of context-free languages. Math. Syst. Theory 2,1968.[Kos84] Kai Koskimies. A speci�cation language for one-pass semantic analysis. InProceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction,volume 19 of SIGPLAN Notices, pages 179{189, June 1984.[Kow79] Robert Kowalski. Logic for Problem Solving. North-Holland, 1979.[Laj90] G. Lajos. Language-directed programming in meta-lisp. In EUROPAL'90: TheFirst European Conference on the Practical Applications of Lisp, Churchill Col-lege Cambridge, UK,, 1990.[Laj93] G. Lajos. Meta-LispUsers's Manual. School of Computer Studies, The Uni-versity of Leeds, Leeds LS2 9JT, 1993.[MAE+65] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, andMichael I. Levin. LISP 1.5 Programmer's Manual. The Computation Centerand Research Laboratory of Electronics, Massachusetts Institute of Technology,The M.I.T. Press, 1965.[Mar83] Jed Marti. The Little META Translator Writing System. Software { Practiceand Experience, 13:941{959, 1983.[McC60] John McCarthy. Recursive functions of symbolic expressions and their compu-tation by machine, part i. Communications of the ACM, 3(4):184{195, April1960.

208 BIBLIOGRAPHY[McC80] John McCarthy. Lisp - notes on its past and future. In The 1980 LISP Confer-ence, Stanford, 1980.[McD80] D. McDermott. The PROLOG phenomena. SIGART Newsletter 72, pages 16{20, 1980.[Mos79] P. D. Mosses. SIS { semantics implementation system, reference manual anduser guide. Technical Report DAIMI MD-30, Aarhus University, 1979.[Nah91] Colas Nahaboo. GWM Manual: The X11 Generic Window Manager. KOALAProject { BULL Research, 1989-1991.[NF89] Tim Nicholson and Norman Foo. A denotational semantics for prolog. ACMTransaction on Programming Languages and Systems, 11(4):651{665, October1989.[Pag81] Frank G. Pagan. Formal Speci�cation of Programming Languages, A PanoramicPrimer. Prentice-Hall Inc., 1981.[Pau84] Lawrence Paulson. Compiler generation from denotational semantics. InB. Lorho, editor, Methods and Tools for Compiler Construction, pages 219{250.Cambridge University Press, 1984.[PC89] James J. Purtilo and John R. Callahan. Parse-tree annotations. CACM,32(12):1467{1477, 1989.[Pra75] Terrence W. Pratt. Programming Languages: Design and Implementation.Prentice-Hall, 1st edition, 1975.[Red86] Uday S. Reddy. On the relationship between logic and functional languages.In Doug DeGroot and Gary Lindstrom, editors, Logic Programming, Functions,Relations, and Equations, pages 3{36. Prentice-Hall, 1986.[Rey72] J. C. Reynolds. De�nitional interpreters for higher-order programming lan-guages. In Proceedings of the 25th ACM National Conference, pages 717{740,Boston, 1972.[San82] David Sandberg. LITHE: A language combining a exible syntax and classes.In Conference Record of the Ninth Annual ACM Symposium on Principles ofProgramming Languages, pages 142{145, January 1982.

BIBLIOGRAPHY 209[Sch64] D. V. Schorre. Meta-II: a syntax-oriented compiler writing language. In Proc.19th ACM National Conf., pages D1.3{1{D1.3{11, 1964.[Sch86] David A. Schmidt. Denotational Semantics: A Methodology for Language De-velopment. Allyn and Bacon, Inc., 1986.[Smi84] Brian Cantwell Smith. Reection and semantics in Lisp. In Eleventh An-nual ACM Symposium on the Principles of Programming Languages, volume 11,pages 23{35, Salt Lake City, Utah, January 1984.[Spi88] J. M. Spivey. Understanding Z { A Speci�cation language and its formal se-mantics. Number 3 in Cambridge Tracts in Theoretical Computer Science.Cambridge University Press, 1988.[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-gramming Language Semantics, volume 1. of The MIT Press Series in ComputerScience. The MIT Press, 1977.[Tof90] Mads Tofte. Compiler Generators: What they Can Do, What They might Do,and What They Will Probably Never Do, volume 19 of ETACS Monographs onTheoretical Computer Science. Springer-Verlag, 1990.[Wad87] Philip Wadler. A way for pattern matching to cohabit with data abstraction. InFourteenth Annual ACM Symposium on Principles of Programming Languages,pages 307{313, 1987.[Wai90] W. M. Waite. Use of Attribute Grammars in Compiler Construction. In P. De-ransart and M. Jourdan, editors, Attribute Grammars and their Applications,volume 461 of LNCS, International Conference WAGA Paris, France, September1990. Springer-Verlag.[WAL+90] Pierre Weis, M�aria-Virginia Aponte, Alain Laville, Michel Mauny, and Asc�anderSu�arez. The CAML Reference Manual. Technical Report Version 2.6, ProjetFormal, INRIA-ENS, 1990.[Wan84] M. Wand. A Semantic Prototyping System. In Proceedings of the ACM SIG-PLAN '84 Symp. on Compiler Construction, volume 19 of SIGPLAN Notices,pages 213{221, Montreal, June 1984.[Wei67] Clark Weissman. LISP 1.5 PRIMER. Dickenson Publishing Company, Inc.,Belmont, California, 1967.

210 BIBLIOGRAPHY[Wex81] R. L. Wexelblat. History of Programming Languages. Academic Press, 1981.[Wik87] Ake Wikstr�om. Functional Programming Using Standard ML. Prentice Hall,London, 1987.[Win83] Terry Winograd. Language as a Cognitive Process: Syntax, volume 1. Addison-Wesley, 1983.[YN88] Yoshiyuki Yamashita and Ikuo Nakata. Coupled context-free grammar as aprogramming paradigm. In P. Deransart and J. Malunszynski, editors, Pro-gramming Languages Implementation and Logic Programming, Lecture Notes inComputer Science 138, pages 132{145. Springer-Verlag, 1988.

